Araştırma Makalesi
BibTex RIS Kaynak Göster

Eisenia fetida (Savigny 1826)’da mikroplastik maruziyetinin büyüme parametreleri üzerine etkisi

Yıl 2020, Cilt: 2 Sayı: 2, 97 - 104, 31.12.2020

Öz

Dünya üzerinde plastik kullanımının artması ile birlikte zamanla aşınarak mikroplastik adı verilen daha küçük partiküller doğal ortamlarda artış göstermektedir. Mikroplastikler canlılar tarafından istemsizce tüketilebilir
boyutlarda olmaları sebebiyle tehdit oluşturmaktadırlar. Bu çalışmada mikroplastiğin toprak solucanlarının (Eisenia fetida) büyüme parametrelerine etkileri araştırılmıştır. Bu çerçevede solucanların diyetine günlük toplam besin gereksinimlerinin %25’i oranında 1mm’den küçük mikroplastik parçacıklar katılmıştır. Bir grup solucan polistiren (PS) ortamına bırakılmıştır. Deneylerde iki farklı mikroplastik, plastik boya pigmenti (PBP) ve polimetilmetakrilat (PMMA) kullanılmış ve toprak solucanlarının büyüme parametreleri üzerine etkileri
gözlenmiştir. Toprak solucanlarının PBP, PMMA ve PS uygulamalarında 21. ve 42., PBP tekrar uygulamasında 42. ve 84. günlerindeki boy ve ağırlıkları ölçülmüştür. Uygulama öncesinde E. fetida bireyleri çay ve semizotu ortamında 30 gün boyunca beslenmiş, boy ve ağırlıklarında artış gözlenmiştir. PBP, PBP tekrar, PMMA ve PS uygulamalarında süreçte solucanların ağırlığına bir azalma gözlenmiştir.

Destekleyen Kurum

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince Desteklenmiştir.

Proje Numarası

FYL-2017-1263

Teşekkür

Bu çalışma Elif Menteş'in Yüksek Lisans tez çalışmasının bir bölümüdür ve Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2017-1263 nolu proje ile desteklenmiştir. Desteklerinden dolayı Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine teşekkür ederiz.

Kaynakça

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1596-1605.
  • Aydın, H. (2006). Toprak solucanlarının çevre toksikolojisi yönünden değerlendirilmesi. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 32(3): 75-79.
  • Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of The Royal Society of London B: Biological Sciences, 364(1526): 1985-1998.
  • Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. (2014). Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48(20): 12336-12343.
  • Chambers, J. M., Freeny, A. & Heiberger, R. M. (1992). Analysis of variance; designed experiments. Chapter 5 of Statistical Models in Eds. J. M. Chambers & T. J. Hastie, Wadsworth & Brooks/Cole.
  • Christaki, U., Dolan, J. R., Pelegri, S. & Rassoulzadegan, F. (1998). Consumption of picoplankton-size particles by marine ciliates: Effects of physiological state of the ciliate and particle quality. Limnology and Oceanography, 43(3): 458-464.
  • Ciszewska, J., Kecik, T., Legec, E., Zydecki, M. & Switka-Wieclawska, I. (1997). Does Nd: YAG laser beam damage to artificial intraocular lenses cause depolymerization of PMMA?. In Laser Technology V: Applications in Medicine and Ecology International Society for Optics and Photonics, 3188: 112-115.
  • Do Sul, J. A. I. & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185: 352-364.
  • Frick, C., Dietz, A. C., Merritt, K., Umbreit, T. H. & Tomazic-Jezic, V. J. (2006). Effects of prosthetic materials on the host immune response: Evaluation of Polymethyl Methacrylate (PMMA), Polyethylene (PE), and Polystyrene (PS) particles. Journal of Long-Term Effects of Medical Implants, 16(6): 423-433.
  • Gall, S. C. & Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1): 170-179.
  • Goldstein, M. C., Rosenberg, M. & Cheng, L. (2012). Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biology Letters, 8(5): 817-820.
  • Green, D. S., Boots, B., Sigwart, J., Jiang, S. & Rocha, C. (2016). Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environmental Pollution, 208: 426-434.
  • Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Van Der Ploeg, M., Besseling, E., Koelmans, A. A. & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5): 2685-2691.
  • Jones, L. C., Frondoza, C. & Hungerford, D.S. (2001). Effect of PMMA particles and movement on an implant interface in a canine model. Bone & Joint Journal, 83(3): 448-458.
  • Kümbüloğlu, Ö. & Oral, O. (2013). Biyomateryaller. EU Diş Hekimliği Fakültesi Dergisi, 34(1): 27-33.
  • Lambert, S., Sinclair, C., Boxall, A. (2014). Occurrence, Degradation, and Effect of Polymer-Based Materials in the Environment. In Reviews of Environmental Contamination and Toxicology, 227: 1-53.
  • Rillig, M. C., Ziersch, L. & Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7(1): 1362.
  • R Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • R Studio Team, (2020). R Studio: Integrated development for R. R Studio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., Da Costa, J., Duarte, A. C., Vala, H. & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220: 495-503.
  • Sampedro, L. & Domínguez, J. (2008). Stable isotope natural abundances (δ13C and δ15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Applied Soil Ecology, 38(2): 91-99.
  • Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185: 77-83.
  • Thompson, R. C., Moore, C. J., Vom Saal, F. S. & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of The Royal Society of London B: Biological Sciences, 364(1526): 2153-2166.
  • Van Cauwenberghe, L., Vanreusel, A., Mees, J. & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182: 495-499.
  • Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20): 12087-12093.
  • Wang, T., Hu, M., Song, L., Yu, J., Liu, R., Wang, S., Wang, Z., Sokolova, I. M., Huang, W. & Wang, Y. (2020). Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environmental Pollution, 266: 115137.
  • Wright, S. L., Thompson, R. C. & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178: 483-492.

The growth responses of Eisenia fetida (Savigny 1826) exposed to microplastics

Yıl 2020, Cilt: 2 Sayı: 2, 97 - 104, 31.12.2020

Öz

With the increase in the use of plastics around the world, smaller particles called microplastics increase over time in natural environments. Microplastics are potential threatening because they can be consumed involuntarily by organisms. In this study, the effects of microplastics on the growth parameters
of soil worms (Eisenia fetida) were investigated. Within this framework, the earthworm groups were fed diet contains <1 mm microplastic grains at the rate of 25% of the total daily requirements of the worms. A group of worms was kept in the polystyrene (PS) environment. Two different microplastics, plastic paint
pigment (PBP) and polymethylmethacrylate (PMMA) were used in experiments and the effects of the microplastics on the growth parameters of the worms were observed. The length and weights of worms exposed to PBP, PMMA and PS were measured on the 21st and 42nd days in the applications and the 42nd
and 84th days in the repeat application of PBP. Before the application, E. fetida individuals were fed in tea and purslane medium for 30 days, and the mean length and weights of worms were increased. In PBP, PBP repeat, PMMA and PS applications, a decrease in worms’ weight was observed in the process.

Proje Numarası

FYL-2017-1263

Kaynakça

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1596-1605.
  • Aydın, H. (2006). Toprak solucanlarının çevre toksikolojisi yönünden değerlendirilmesi. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 32(3): 75-79.
  • Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of The Royal Society of London B: Biological Sciences, 364(1526): 1985-1998.
  • Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. (2014). Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48(20): 12336-12343.
  • Chambers, J. M., Freeny, A. & Heiberger, R. M. (1992). Analysis of variance; designed experiments. Chapter 5 of Statistical Models in Eds. J. M. Chambers & T. J. Hastie, Wadsworth & Brooks/Cole.
  • Christaki, U., Dolan, J. R., Pelegri, S. & Rassoulzadegan, F. (1998). Consumption of picoplankton-size particles by marine ciliates: Effects of physiological state of the ciliate and particle quality. Limnology and Oceanography, 43(3): 458-464.
  • Ciszewska, J., Kecik, T., Legec, E., Zydecki, M. & Switka-Wieclawska, I. (1997). Does Nd: YAG laser beam damage to artificial intraocular lenses cause depolymerization of PMMA?. In Laser Technology V: Applications in Medicine and Ecology International Society for Optics and Photonics, 3188: 112-115.
  • Do Sul, J. A. I. & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185: 352-364.
  • Frick, C., Dietz, A. C., Merritt, K., Umbreit, T. H. & Tomazic-Jezic, V. J. (2006). Effects of prosthetic materials on the host immune response: Evaluation of Polymethyl Methacrylate (PMMA), Polyethylene (PE), and Polystyrene (PS) particles. Journal of Long-Term Effects of Medical Implants, 16(6): 423-433.
  • Gall, S. C. & Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1): 170-179.
  • Goldstein, M. C., Rosenberg, M. & Cheng, L. (2012). Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biology Letters, 8(5): 817-820.
  • Green, D. S., Boots, B., Sigwart, J., Jiang, S. & Rocha, C. (2016). Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environmental Pollution, 208: 426-434.
  • Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Van Der Ploeg, M., Besseling, E., Koelmans, A. A. & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5): 2685-2691.
  • Jones, L. C., Frondoza, C. & Hungerford, D.S. (2001). Effect of PMMA particles and movement on an implant interface in a canine model. Bone & Joint Journal, 83(3): 448-458.
  • Kümbüloğlu, Ö. & Oral, O. (2013). Biyomateryaller. EU Diş Hekimliği Fakültesi Dergisi, 34(1): 27-33.
  • Lambert, S., Sinclair, C., Boxall, A. (2014). Occurrence, Degradation, and Effect of Polymer-Based Materials in the Environment. In Reviews of Environmental Contamination and Toxicology, 227: 1-53.
  • Rillig, M. C., Ziersch, L. & Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7(1): 1362.
  • R Core Team, (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • R Studio Team, (2020). R Studio: Integrated development for R. R Studio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., Da Costa, J., Duarte, A. C., Vala, H. & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220: 495-503.
  • Sampedro, L. & Domínguez, J. (2008). Stable isotope natural abundances (δ13C and δ15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Applied Soil Ecology, 38(2): 91-99.
  • Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185: 77-83.
  • Thompson, R. C., Moore, C. J., Vom Saal, F. S. & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of The Royal Society of London B: Biological Sciences, 364(1526): 2153-2166.
  • Van Cauwenberghe, L., Vanreusel, A., Mees, J. & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182: 495-499.
  • Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20): 12087-12093.
  • Wang, T., Hu, M., Song, L., Yu, J., Liu, R., Wang, S., Wang, Z., Sokolova, I. M., Huang, W. & Wang, Y. (2020). Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environmental Pollution, 266: 115137.
  • Wright, S. L., Thompson, R. C. & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178: 483-492.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ekoloji
Bölüm Araştırma Makaleleri
Yazarlar

Elif Menteş Bu kişi benim 0000-0002-9282-081X

Sukran Yalçın Ozdilek 0000-0001-8264-7606

Proje Numarası FYL-2017-1263
Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 30 Ekim 2020
Kabul Tarihi 5 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 2

Kaynak Göster

APA Menteş, E., & Yalçın Ozdilek, S. (2020). Eisenia fetida (Savigny 1826)’da mikroplastik maruziyetinin büyüme parametreleri üzerine etkisi. Marine and Life Sciences, 2(2), 97-104.

Flag Counter