Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 4 Sayı: 1, 53 - 62, 30.06.2022
https://doi.org/10.51756/marlife.1091169

Öz

Proje Numarası

2020.KB.SAG.024

Kaynakça

  • Abbaszadegan, M., Huber, M. S., Gerba, C. P. & Pepper, I. L. (1993). Detection of enteroviruses in groundwater with the polymerase chain reaction. Applied and Environmental Microbiology, 59(5): 1318-1324. https://doi.org/10.1128/aem.59.5.1318-1324.1993
  • Bitton, G. (1975). Adsorption of viruses onto surfaces in soil and water. Water Research, 9(5-6): 473-484. https://doi.org/10.1016/0043-1354(75)90071-8
  • Brown, J. D., Goekjian, G., Poulson, R., Valeika, S. & Stallknecht, D. E. (2009). Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature. Veterinary Microbiology, 136(1-2): 20-26. https://doi.org/10.1016/j.vetmic.2008.10.027
  • Debode, F., Marien, A., Janssen, É., Bragard, C. & Berben, G. (2017). The influence of amplicon length on real-time PCR results. Base, 21(1): 3-11. https://doi.org/10.25518/1780-4507.13461
  • Dublineau, A., Batéjat, C., Pinon, A., Burguière, A. M., Leclercq, I. & Manuguerra, J. C. (2011). Persistence of the 2009 pandemic influenza a (H1N1) virus in water and on non-porous surface. PLoS One, 6(11): e28043. https://doi.org/10.1371/journal.pone.0028043
  • Eisfeld, A. J., Neumann, G. & Kawaoka, Y. (2014). Influenza A virus isolation, culture and identification. Nature Protocols, 9(11): 2663-2681. https://doi.org/10.1038/nprot.2014.180
  • Gillim-Ross, L., Santos, C., Chen, Z., Aspelund, A., Yang, C.F., Ye, D., Jin, H., Kemble, G. & Subbarao, K. (2008). Avian influenza H6 viruses productively infect and cause illness in mice and ferrets. Journal of Virology, 82(21): 10854-10863. https://doi.org/10.1128/JVI.01206-08
  • Gonchar, K. A., Agafilushkina, S. N., Moiseev, D. V., Bozhev, I. V., Manykin, A. A., Kropotkina, E. A., Gambaryan, A. S. & Osminkina, L. A. (2020). H1N1 influenza virus interaction with a porous layer of silicon nanowires. Materials Research Express, 7(3): 035002. https://doi.org/10.1088/2053-1591/ab7719
  • Guan, J., Chan, M., Ma, B., Grenier, C., Wilkie, D. C., Pasick, J., Brooks, B. W. & Spencer, J. L. (2008). Development of methods for detection and quantification of avian influenza and Newcastle disease viruses in compost by real-time reverse transcription polymerase chain reaction and virus isolation. Poultry Science, 87(5): 838-843. https://doi.org/10.3382/ps.2007-00195
  • Guven, D. E. & Akinci, G. (2013). Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. Journal of Environmental Sciences, 25(9): 1784-1794. https://doi.org/10.1016/S1001-0742(12)60198-3
  • Ito, T., Okazaki, K., Kawaoka, Y., Takada, A., Webster, R. G. & Kida, H. (1995). Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Archives of Virology, 140(7): 1163-1172. https://doi.org/10.1007/BF01322743
  • Lang, A. S., Kelly, A. & Runstadler, J. A. (2008). Prevalence and diversity of avian influenza viruses in environmental reservoirs. Journal of General Virology, 89(2): 509-519. https://doi.org/10.1099/vir.0.83369-0
  • Lickfett, T. M., Clark, E., Gehring, T. M. & Alm, E. W. (2018). Detection of Influenza A viruses at migratory bird stopover sites in Michigan, USA. Infection Ecology & Epidemiology, 8(1): 1474709. https://doi.org/10.1080/20008686.2018.1474709
  • Matrosovich, M. & Klenk, H. D. (2003). Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Reviews in Medical Virology, 13(2): 85-97. https://doi.org/10.1002/rmv.372
  • Mercan, Y., Atim, G., Kayed, A. E., Azbazdar, M. E., Kandeil, A., Ali, M. A., Rubrum, A., McKenzie, P., Webby, R. J., Erima, B., Wabwire-Mangen, F., Ukuli, Q. A., Tugume, T., Byarugaba, D. K., Kayali, G., Ducatez, M. F. & Koçer, Z. A. (2021). Molecular characterization of closely related H6N2 Avian Influenza Viruses isolated from Turkey, Egypt, and Uganda. Viruses, 13(4), 607. https://doi.org/10.3390/v13040607
  • Miller, H. K. & Schlesinger, R. W. (1955). Differentiation and purification of influenza viruses by adsorption on aluminum phosphate. The Journal of Immunology, 75(2): 155-160.
  • Reed, L. J. & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3): 493-97. https://doi.org/10.1093/oxfordjournals.aje.a118408
  • Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. (2012). PCR inhibitors–occurrence, properties and removal. Journal of Applied Microbiology, 113(5): 1014-1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
  • Stallknecht, D. E., Shane, S. M., Kearney, M. T. & Zwank, P. J. (1990a). Persistence of avian influenza viruses in water. Avian Diseases, 34(2): 406-411. https://doi.org/10.2307/1591428
  • Stallknecht, D. E., Kearney, M. T., Shane, S. M. & Zwank, P. J. (1990b). Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Diseases, 34(2): 412-418. https://doi.org/10.2307/1591429
  • Wang, G., Deng, G., Shi, J., Luo, W., Zhang, G., Zhang, Q., Liu, L., Jiang, Y., Li, C., Sriwilaijaroen, N. & Hiramatsu, H. (2014). H6 influenza viruses pose a potential threat to human health. Journal of Virology, 88(8): 3953-3964. https://doi.org/10.1128/JVI.03292-13
  • Warren, J., Neal, A. & Rennels, D. (1966). Adsorption of myxoviruses on magnetic iron oxides. Proceedings of the Society for Experimental Biology and Medicine, 121(4): 1250-1253. https://doi.org/10.3181/00379727-121-31020
  • Webster, R.G., Yakhno, M., Hinshaw, V.S., Bean, W.J. & Murti, K.C. (1978). Intestinal influenza: Replication and characterization of influenza viruses in ducks. Virology, 84(2): 268-278. https://doi.org/10.1016/0042-6822(78)90247-7
  • Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiology Reviews, 56(1): 152-179. https://doi.org/10.1128/mr.56.1.152-179.1992
  • WHO. (2002). World Health Organization manual on animal influenza diagnosis and surveillance (No. WHO/CDS/CSR/NCS/2002.5). World Health Organization.
  • WHO. (2021). Information for the molecular detection of influenza viruses. Retrieved on March 18, 2022 from https://www.who.int/teams/global-influenza-programme/laboratory-network/quality-assurance/eqa-project/information-for-molecular-diagnosis-of-influenza-virus
  • Williamson, K. E., Wommack, K. E. & Radosevich, M. (2003). Sampling natural viral communities from soil for culture-independent analyses. Applied and Environmental Microbiology, 69(11): 6628-6633. https://doi.org/10.1128/AEM.69.11.6628-6633.2003
  • Zowalaty, M. E. E., Chander, Y., Redig, P. T., El Latif, H. K. A., Sayed, M. A. E. & Goyal, S. M. (2011). Selective isolation of avian influenza virus (AIV) from cloacal samples containing AIV and Newcastle disease virus. Journal of Veterinary Diagnostic Investigation, 23(2), 330-332. https://doi.org/10.1177/104063871102300222

The effect of sediment composition and polyethylene glycol precipitation on the detection limit of H6N2 influenza virus in sediment samples

Yıl 2022, Cilt: 4 Sayı: 1, 53 - 62, 30.06.2022
https://doi.org/10.51756/marlife.1091169

Öz

Influenza A viruses (IAVs) are naturally carried by wild aquatic birds and generally cause asymptomatic gastroenteric disease in their natural reservoir hosts. Because the viruses follow oral-fecal route in the avian host, they could be shed into water bodies through feces. Furthermore, IAVs that are secreted to abiotic sources might be preserved in the environment for a period, facilitating the transmission of viruses between individuals or species. Viral stability could be affected by several factors such as pH, salinity, and temperature of water. Therefore, this study aims to investigate the lowest amount of infectious IAVs that could be detected in sediment samples via molecular and virus isolation methods, and to compare the sediment composition with the efficiency of detection/isolation of IAVs and viral persistence. For this purpose, an H6N2 virus (A/Aquatic bird/Gediz Delta/1/2018) of avian origin was used for artificially seeding the sediment samples that were collected from Gediz Delta, Izmir, Turkey. Molecular methods showed that lower amount of H6N2 virus could be detected in sediment sample collected from freshwater area (FS) in comparison with the sediment samples that were collected from salty water area (SS). Furthermore, virus precipitation method using polyethylene glycol increased the efficiency of virus isolation by 10-fold in FS, but not in SS. On the other hand, although the detection limit for IAVs was higher in SS than in FS, viral fitness was better maintained in SS. Moreover, high number of cations in the composition of SS along with larger surface area facilitated virus adsorption on SS complicating the virus to detach from sediment particles. Thus, the result of this study remarks that the environmental origin of abiotic sources could affect the viral stability and fitness; therefore, it could affect the transmission dynamics of the virus in different environments.

Destekleyen Kurum

Department of Scientific Research Projects, Dokuz Eylul University

Proje Numarası

2020.KB.SAG.024

Teşekkür

We would like to thank Emre Karayel, Özcan Alptekin for providing us transportation during our field trips, Izmir Bird Paradise employees Celal Murat Aslanapa, Onur Malatyalı, and ornithologist Dr. Ömer Döndüren for guiding us during the field studies. We thank Ercan Kaya from Çamlı Yem Besicilik Sanayii ve Ticaret A.Ş. for kindly providing us turkey blood and Gürol Toykan and Reha Elgün from EGE-TAV A.Ş. for kindly providing us embryonated chicken eggs and chicken blood.

Kaynakça

  • Abbaszadegan, M., Huber, M. S., Gerba, C. P. & Pepper, I. L. (1993). Detection of enteroviruses in groundwater with the polymerase chain reaction. Applied and Environmental Microbiology, 59(5): 1318-1324. https://doi.org/10.1128/aem.59.5.1318-1324.1993
  • Bitton, G. (1975). Adsorption of viruses onto surfaces in soil and water. Water Research, 9(5-6): 473-484. https://doi.org/10.1016/0043-1354(75)90071-8
  • Brown, J. D., Goekjian, G., Poulson, R., Valeika, S. & Stallknecht, D. E. (2009). Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature. Veterinary Microbiology, 136(1-2): 20-26. https://doi.org/10.1016/j.vetmic.2008.10.027
  • Debode, F., Marien, A., Janssen, É., Bragard, C. & Berben, G. (2017). The influence of amplicon length on real-time PCR results. Base, 21(1): 3-11. https://doi.org/10.25518/1780-4507.13461
  • Dublineau, A., Batéjat, C., Pinon, A., Burguière, A. M., Leclercq, I. & Manuguerra, J. C. (2011). Persistence of the 2009 pandemic influenza a (H1N1) virus in water and on non-porous surface. PLoS One, 6(11): e28043. https://doi.org/10.1371/journal.pone.0028043
  • Eisfeld, A. J., Neumann, G. & Kawaoka, Y. (2014). Influenza A virus isolation, culture and identification. Nature Protocols, 9(11): 2663-2681. https://doi.org/10.1038/nprot.2014.180
  • Gillim-Ross, L., Santos, C., Chen, Z., Aspelund, A., Yang, C.F., Ye, D., Jin, H., Kemble, G. & Subbarao, K. (2008). Avian influenza H6 viruses productively infect and cause illness in mice and ferrets. Journal of Virology, 82(21): 10854-10863. https://doi.org/10.1128/JVI.01206-08
  • Gonchar, K. A., Agafilushkina, S. N., Moiseev, D. V., Bozhev, I. V., Manykin, A. A., Kropotkina, E. A., Gambaryan, A. S. & Osminkina, L. A. (2020). H1N1 influenza virus interaction with a porous layer of silicon nanowires. Materials Research Express, 7(3): 035002. https://doi.org/10.1088/2053-1591/ab7719
  • Guan, J., Chan, M., Ma, B., Grenier, C., Wilkie, D. C., Pasick, J., Brooks, B. W. & Spencer, J. L. (2008). Development of methods for detection and quantification of avian influenza and Newcastle disease viruses in compost by real-time reverse transcription polymerase chain reaction and virus isolation. Poultry Science, 87(5): 838-843. https://doi.org/10.3382/ps.2007-00195
  • Guven, D. E. & Akinci, G. (2013). Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. Journal of Environmental Sciences, 25(9): 1784-1794. https://doi.org/10.1016/S1001-0742(12)60198-3
  • Ito, T., Okazaki, K., Kawaoka, Y., Takada, A., Webster, R. G. & Kida, H. (1995). Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Archives of Virology, 140(7): 1163-1172. https://doi.org/10.1007/BF01322743
  • Lang, A. S., Kelly, A. & Runstadler, J. A. (2008). Prevalence and diversity of avian influenza viruses in environmental reservoirs. Journal of General Virology, 89(2): 509-519. https://doi.org/10.1099/vir.0.83369-0
  • Lickfett, T. M., Clark, E., Gehring, T. M. & Alm, E. W. (2018). Detection of Influenza A viruses at migratory bird stopover sites in Michigan, USA. Infection Ecology & Epidemiology, 8(1): 1474709. https://doi.org/10.1080/20008686.2018.1474709
  • Matrosovich, M. & Klenk, H. D. (2003). Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Reviews in Medical Virology, 13(2): 85-97. https://doi.org/10.1002/rmv.372
  • Mercan, Y., Atim, G., Kayed, A. E., Azbazdar, M. E., Kandeil, A., Ali, M. A., Rubrum, A., McKenzie, P., Webby, R. J., Erima, B., Wabwire-Mangen, F., Ukuli, Q. A., Tugume, T., Byarugaba, D. K., Kayali, G., Ducatez, M. F. & Koçer, Z. A. (2021). Molecular characterization of closely related H6N2 Avian Influenza Viruses isolated from Turkey, Egypt, and Uganda. Viruses, 13(4), 607. https://doi.org/10.3390/v13040607
  • Miller, H. K. & Schlesinger, R. W. (1955). Differentiation and purification of influenza viruses by adsorption on aluminum phosphate. The Journal of Immunology, 75(2): 155-160.
  • Reed, L. J. & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3): 493-97. https://doi.org/10.1093/oxfordjournals.aje.a118408
  • Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. (2012). PCR inhibitors–occurrence, properties and removal. Journal of Applied Microbiology, 113(5): 1014-1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
  • Stallknecht, D. E., Shane, S. M., Kearney, M. T. & Zwank, P. J. (1990a). Persistence of avian influenza viruses in water. Avian Diseases, 34(2): 406-411. https://doi.org/10.2307/1591428
  • Stallknecht, D. E., Kearney, M. T., Shane, S. M. & Zwank, P. J. (1990b). Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Diseases, 34(2): 412-418. https://doi.org/10.2307/1591429
  • Wang, G., Deng, G., Shi, J., Luo, W., Zhang, G., Zhang, Q., Liu, L., Jiang, Y., Li, C., Sriwilaijaroen, N. & Hiramatsu, H. (2014). H6 influenza viruses pose a potential threat to human health. Journal of Virology, 88(8): 3953-3964. https://doi.org/10.1128/JVI.03292-13
  • Warren, J., Neal, A. & Rennels, D. (1966). Adsorption of myxoviruses on magnetic iron oxides. Proceedings of the Society for Experimental Biology and Medicine, 121(4): 1250-1253. https://doi.org/10.3181/00379727-121-31020
  • Webster, R.G., Yakhno, M., Hinshaw, V.S., Bean, W.J. & Murti, K.C. (1978). Intestinal influenza: Replication and characterization of influenza viruses in ducks. Virology, 84(2): 268-278. https://doi.org/10.1016/0042-6822(78)90247-7
  • Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiology Reviews, 56(1): 152-179. https://doi.org/10.1128/mr.56.1.152-179.1992
  • WHO. (2002). World Health Organization manual on animal influenza diagnosis and surveillance (No. WHO/CDS/CSR/NCS/2002.5). World Health Organization.
  • WHO. (2021). Information for the molecular detection of influenza viruses. Retrieved on March 18, 2022 from https://www.who.int/teams/global-influenza-programme/laboratory-network/quality-assurance/eqa-project/information-for-molecular-diagnosis-of-influenza-virus
  • Williamson, K. E., Wommack, K. E. & Radosevich, M. (2003). Sampling natural viral communities from soil for culture-independent analyses. Applied and Environmental Microbiology, 69(11): 6628-6633. https://doi.org/10.1128/AEM.69.11.6628-6633.2003
  • Zowalaty, M. E. E., Chander, Y., Redig, P. T., El Latif, H. K. A., Sayed, M. A. E. & Goyal, S. M. (2011). Selective isolation of avian influenza virus (AIV) from cloacal samples containing AIV and Newcastle disease virus. Journal of Veterinary Diagnostic Investigation, 23(2), 330-332. https://doi.org/10.1177/104063871102300222
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Muhammet Ekin Azbazdar 0000-0003-1752-3142

Görkem Akıncı 0000-0001-6288-3812

Erkan Güler 0000-0001-5657-1222

Zeynep Ahsen Koçer 0000-0001-9178-0142

Proje Numarası 2020.KB.SAG.024
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 21 Mart 2022
Kabul Tarihi 10 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 1

Kaynak Göster

APA Azbazdar, M. E., Akıncı, G., Güler, E., Koçer, Z. A. (2022). The effect of sediment composition and polyethylene glycol precipitation on the detection limit of H6N2 influenza virus in sediment samples. Marine and Life Sciences, 4(1), 53-62. https://doi.org/10.51756/marlife.1091169
Flag Counter