Research Article
BibTex RIS Cite

Yelkenli Yatlarda Ana Makine Sayısının Tasarım ve Mühendislik Açısından Etkilerinin İncelenmesi: Bodrum Guletleri Örneği

Year 2023, Volume: 5 Issue: 2, 55 - 61, 27.12.2023
https://doi.org/10.51756/marlife.1376592

Abstract

Yat tasarımı, denizde güvenliği sağlamaya yönelik düzenlemelerin yanı sıra kullanıcıların gereksinimlerini de karşılayan optimum çözümü elde etmek için çok disiplinli süreçlerden oluşur. Yat tipinin belirlenmesinin ardından kullanıcının talep ve beklentileri doğrultusunda genel yerleşim planının hazırlanması, hidrostatik hesapların ve hız-güç hesaplamalarının yapılması, tekne ve üst yapı tasarımının belirlenmesi gibi süreçler takip edilmektedir. Bu süreçlerde hız ve performans beklentilerine bağlı olarak yapılan ana motor seçimi sadece makine dairesini değil aynı zamanda teknenin şaft açısı, pervane-gövde açıklığı, teknenin yerleşimi, makine dairesine bitişik alanlar gibi birçok detayı da etkilemektedir. Bu araştırmada Türkiye'ye özgü tekneler arasında yer alan, özel tasarım ve imalat süreçleriyle üretilen Bodrum Guletleri ele alınarak, motor sayısının etkilerinin tasarım ve mühendislik açısından incelenmesi amaçlanmaktadır. Bu kapsamda toplam 46 adet Bodrum Guleti incelenmiş, elde edilen değerler doğrultusunda seçilen parametreler tasarım ve mühendislik açısından karşılaştırılmıştır. İncelenen yatların makine dairesi yerleşim planları tasarım açısından karşılaştırma amacıyla kullanılırken, mühendislik bazlı değerlendirmede şaft açısı kullanılmıştır. Ayrıca incelenen modellerin dirençleri ve dolayısıyla güç gereksinimleri kurulu motor güçleriyle karşılaştırılmıştır. Sonuçlar, tek ana motorlu modellerin, daha az yükseklik ve dolayısıyla makine dairesi için daha az alan gerektirmesi ve tahrik verimliliği açısından avantajlı olduğunu göstermektedir. Makina için gerekli yüksekliğin makina yüksekliğine oranının ortalama değeri tek makinalı konfigürasyon için 1.428, çift makinalı konfigürasyon için 1.982 olarak hesaplanmıştır. Ayrıca sonuçlar, şaft açısının ortalama değerinin tek makina için 5,29, çift makina konfigürasyonu için 8,16 derece olduğunu göstermektedir. Ayrıca çalışma, hesaplanan güç ile kurulu güç arasında bir boşluk olduğunu ve bunun da özellikle Bodrum Guletleri için çift makina konfigürasyonunda aşırı tüketime neden olduğunu göstermektedir.

References

  • Akman, M., Turan, B. İ. (2023). Energy-Efficient Yacht Design: An Investigation on the Environmental Impacts of Engine Selection for Bodrum Gulets. In: Sogut, M. Z., Karakoc, T. H., Secgin, O., Dalkiran, A. (eds) Proceedings of the 2022 International Symposium on Energy Management and Sustainability. ISEMAS 2022. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-30171-1_49
  • Birk, L. (2019). Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion. John Wiley & Sons.
  • Blount, Donald. L., & Fox, D. L. (1976). Small Craft Power Prediction. Marine Technology, 13(1), 14–45. https://doi.org/10.5957/mt1.1976.13.1.14
  • Dubois, E. (1998). Superyachts. In W. Claugthon & W. Shenoi (Eds.), Sailing Yacht Design Practice (pp. 32–42). Addison Wesley Longman Limited.
  • Elkafas, A. E., Elgohary, M. M., & Zeid, A. E. (2019). Numerical Study on the Hydrodynamic Drag Force of a Container Ship Model. Alexandria Engineering Journal, 58(3), 849-859. https://doi.org/10.1016/j.aej.2019.07.004
  • Fossati, F., & Diana, G. (2004). Principi di Funzionamento di Un’Imbarcazione a Vela. Italian Polytechnic Press.
  • Gammon, M., Kükner, A., & Alkan, A. (2005). Hull form optimisation of performance characteristics of Turkish Gulets for charter. The 17th Chasepeake Sailing Yacht Symposium, 79–90.
  • Gerr, D. (2013). Tekne Mekaniği El Kitabı (1st ed.). Amatör Denizcilik Federasyonu.
  • Gür, M. C. (2020). Kürekten Yelkene Kaybolan Miras (1.). Koç Üniversitesi Denizcilik Forumu.
  • Hamlin, C. (1996). Preliminary Design of Boats and Ships. Cornell Maritime Press.
  • Holtrop, J., & Mennen, G. G. J. (1982). An Approximate Power Prediction Method. International Shipbuilding Progress, 29(335), 166-170.
  • Kınacı, Ö. K. (2009). Mathematical models of Bodrum type schooner yacht serie forms [M.Sc. Thesis, İstanbul Technical University].
  • Köyağasıoğlu, Y. (2014). Denizin Kanatlı Perileri Yelkenliler (1.). Naviga Yayınları.
  • Kükner, A. (2009). Turkish type sailing yacth gulet. GMO Journal of Ship and Marine Technology, 181, 5–12.
  • Kükner, A., Sarıöz, K., Güner, M., Bal, Ş., Akyıldız, H., Aydın, M., Turan, F., & Özalper, F. (2009). Türk Tipi Guletlerin İncelenmesi ve Form Optimizasyonu (TÜBİTAK Araştırma Projesi Raporu 106M086). TÜBİTAK.
  • Larsson, L., & Eliasson, R. E. (2007). Principles of Yacht Design (Third Edition). International Marine/McGraw-Hill.
  • Maxsurf (Version 23). (2022). [Computer software]. Bentley.
  • Molland, A. M. (2008). The Maritime Engineering Reference Book- A Guide to Ship Design, Construction and Operation. Elsevier Butterworth-Heinemann.
  • Moody, R. D. (1996). Preliminary Power Prediction During Early Design Stages of a Ship. School of Mechanical and Process Engineering at the Cape Technikon.
  • Özgel Felek, S., & Arabacıoğlu, B. C. (2019). A Model Proposal to Trawler Yachts from Hull form Importing to Superstructure, Interior Space Arrangement and Modelıng With Set of Numerical Parameters. Online Journal of Art and Design, 7(1), 1-22.
  • Papanikolaou, A. (2014). Ship Design-Methodologies of Preliminary Design (1st ed.). Springer.
  • Rhino3D (Version 7). (2020). [Computer software]. Robert McNeel & Associates. https://www.rhino3d.com/
  • Sarıoğlu, B. S., & Kükner, A. (2018). Form Factor Prediction for Turkish type Bodrum Gulets. 3rd International Naval Architecture and Maritime Symposium Proceedings, 741–763.
  • Tupper, E. C. (2004). Introduction to Naval Architecture (4th ed.). Elsevier Butterworth-Heinemann.
  • Turan, A. E. (2009). Creating a hull form for the gulets depending on the Cp [M.Sc. Thesis, İstanbul Technical University].
  • Turan, B. İ. (2021a). Comparison of forms of Bodrum Gulets and the Gulets used for fishing in Bodrum. Dokuz Eylul University Maritime Faculty Journal, Özel Sayı, 37–62. https://doi.org/10.18613/deudfd.751944
  • Turan, B. İ. (2021b). Determination of engine room parameters in preliminary design process of different yacht types. GMO Journal of Ship and Marine Technology, 220, 175-191. https://doi.org/10.54926/gdt.1002636
  • Turan, B. İ. (2022). Comparison of Tirhandil and Piyade type boat forms from design and engineering perspectives. Journal of Marine and Engineering Technology, 2(2), 78–90.
  • Turan, B. İ. (2023). Guideline for preliminary design phase of trawler type yachts. Marine Science and Technology Bulletin, 12(3), 312–321. https://doi.org/10.33714/masteb.1334052
  • Turan, B. İ., & Akman, M. (2021). Modeling and comparison of Bodrum Gulets’ hull forms with round and transom sterns. Journal of ETA Maritime Science, 9(2), 120–129. https://doi.org/10.4274/jems.2021.09327
  • Turan, B. İ., Akman, M., & Özbey, T. (2021). Design Comparison of Bodrum Gulets and Tirhandils. 2nd International Congress on Ship and Marine Technology Proceedings, 491–497.
  • Turan, B. İ., & Özcan, A. C. (2023). Investigation of usage distribution in Bodrum Gulets during the blue voyage. Dokuz Eylul University Maritime Faculty Journal, 13(1), 52-73.

Investigation on the effects of the number of main engines in sailing yachts in design and engineering perspectives: A case of Bodrum Gulets

Year 2023, Volume: 5 Issue: 2, 55 - 61, 27.12.2023
https://doi.org/10.51756/marlife.1376592

Abstract

Yacht design consists of multidisciplinary processes to obtain optimum solution that satisfies the requirements of the users as well as regulations to assure the safety at sea. Following the determination of the yacht type, processes such as preparing the general layout plan in line with the demands and expectations of the user, making hydrostatic calculations and speed-power calculations, determining the hull and superstructure design are followed. In these processes, the main engine selection, which is made depending on the speed and performance expectations, affects not only the engine room, but also many details such as the shaft angle of the boat, the propeller-hull clearance, the placement of the areas adjacent to the engine room. In this research, Bodrum Gulets, which are among the boats unique to Türkiye and produced with custom design and manufacturing processes, are discussed and it is aimed to examine the effects of the number of engines from the design and engineering perspectives. In this context, a total of 46 Bodrum Gulets were examined, and in line with the values obtained, selected parameters have been compared from the design and the engineering perspectives. While the engine room layout plans of the investigated yachts were used for comparison in terms of design, shaft angle was used in comparison in engineering-based evaluation. Moreover, investigated models’ resistance and consequently the power requirements have been compared with the installed engine powers. The results show that models with single main engine are advantageous in terms of requiring less height and consequently less space for the engine room and propulsion efficiency perspectives. The mean value for the ratio between the required height to the height of the engine is calculated as 1.428 for the single engine and 1.982 for the twin engine configuration. Moreover, the results show that the mean value of the shaft angle is 5.29 for single engine and 8.16 degrees for the twin engine configuration. Additionally, the study shows that there is a gap between the calculated power and the installed power, which causes over consumption especially for the twin-engine configuration for the Bodrum Gulets.

References

  • Akman, M., Turan, B. İ. (2023). Energy-Efficient Yacht Design: An Investigation on the Environmental Impacts of Engine Selection for Bodrum Gulets. In: Sogut, M. Z., Karakoc, T. H., Secgin, O., Dalkiran, A. (eds) Proceedings of the 2022 International Symposium on Energy Management and Sustainability. ISEMAS 2022. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-031-30171-1_49
  • Birk, L. (2019). Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion. John Wiley & Sons.
  • Blount, Donald. L., & Fox, D. L. (1976). Small Craft Power Prediction. Marine Technology, 13(1), 14–45. https://doi.org/10.5957/mt1.1976.13.1.14
  • Dubois, E. (1998). Superyachts. In W. Claugthon & W. Shenoi (Eds.), Sailing Yacht Design Practice (pp. 32–42). Addison Wesley Longman Limited.
  • Elkafas, A. E., Elgohary, M. M., & Zeid, A. E. (2019). Numerical Study on the Hydrodynamic Drag Force of a Container Ship Model. Alexandria Engineering Journal, 58(3), 849-859. https://doi.org/10.1016/j.aej.2019.07.004
  • Fossati, F., & Diana, G. (2004). Principi di Funzionamento di Un’Imbarcazione a Vela. Italian Polytechnic Press.
  • Gammon, M., Kükner, A., & Alkan, A. (2005). Hull form optimisation of performance characteristics of Turkish Gulets for charter. The 17th Chasepeake Sailing Yacht Symposium, 79–90.
  • Gerr, D. (2013). Tekne Mekaniği El Kitabı (1st ed.). Amatör Denizcilik Federasyonu.
  • Gür, M. C. (2020). Kürekten Yelkene Kaybolan Miras (1.). Koç Üniversitesi Denizcilik Forumu.
  • Hamlin, C. (1996). Preliminary Design of Boats and Ships. Cornell Maritime Press.
  • Holtrop, J., & Mennen, G. G. J. (1982). An Approximate Power Prediction Method. International Shipbuilding Progress, 29(335), 166-170.
  • Kınacı, Ö. K. (2009). Mathematical models of Bodrum type schooner yacht serie forms [M.Sc. Thesis, İstanbul Technical University].
  • Köyağasıoğlu, Y. (2014). Denizin Kanatlı Perileri Yelkenliler (1.). Naviga Yayınları.
  • Kükner, A. (2009). Turkish type sailing yacth gulet. GMO Journal of Ship and Marine Technology, 181, 5–12.
  • Kükner, A., Sarıöz, K., Güner, M., Bal, Ş., Akyıldız, H., Aydın, M., Turan, F., & Özalper, F. (2009). Türk Tipi Guletlerin İncelenmesi ve Form Optimizasyonu (TÜBİTAK Araştırma Projesi Raporu 106M086). TÜBİTAK.
  • Larsson, L., & Eliasson, R. E. (2007). Principles of Yacht Design (Third Edition). International Marine/McGraw-Hill.
  • Maxsurf (Version 23). (2022). [Computer software]. Bentley.
  • Molland, A. M. (2008). The Maritime Engineering Reference Book- A Guide to Ship Design, Construction and Operation. Elsevier Butterworth-Heinemann.
  • Moody, R. D. (1996). Preliminary Power Prediction During Early Design Stages of a Ship. School of Mechanical and Process Engineering at the Cape Technikon.
  • Özgel Felek, S., & Arabacıoğlu, B. C. (2019). A Model Proposal to Trawler Yachts from Hull form Importing to Superstructure, Interior Space Arrangement and Modelıng With Set of Numerical Parameters. Online Journal of Art and Design, 7(1), 1-22.
  • Papanikolaou, A. (2014). Ship Design-Methodologies of Preliminary Design (1st ed.). Springer.
  • Rhino3D (Version 7). (2020). [Computer software]. Robert McNeel & Associates. https://www.rhino3d.com/
  • Sarıoğlu, B. S., & Kükner, A. (2018). Form Factor Prediction for Turkish type Bodrum Gulets. 3rd International Naval Architecture and Maritime Symposium Proceedings, 741–763.
  • Tupper, E. C. (2004). Introduction to Naval Architecture (4th ed.). Elsevier Butterworth-Heinemann.
  • Turan, A. E. (2009). Creating a hull form for the gulets depending on the Cp [M.Sc. Thesis, İstanbul Technical University].
  • Turan, B. İ. (2021a). Comparison of forms of Bodrum Gulets and the Gulets used for fishing in Bodrum. Dokuz Eylul University Maritime Faculty Journal, Özel Sayı, 37–62. https://doi.org/10.18613/deudfd.751944
  • Turan, B. İ. (2021b). Determination of engine room parameters in preliminary design process of different yacht types. GMO Journal of Ship and Marine Technology, 220, 175-191. https://doi.org/10.54926/gdt.1002636
  • Turan, B. İ. (2022). Comparison of Tirhandil and Piyade type boat forms from design and engineering perspectives. Journal of Marine and Engineering Technology, 2(2), 78–90.
  • Turan, B. İ. (2023). Guideline for preliminary design phase of trawler type yachts. Marine Science and Technology Bulletin, 12(3), 312–321. https://doi.org/10.33714/masteb.1334052
  • Turan, B. İ., & Akman, M. (2021). Modeling and comparison of Bodrum Gulets’ hull forms with round and transom sterns. Journal of ETA Maritime Science, 9(2), 120–129. https://doi.org/10.4274/jems.2021.09327
  • Turan, B. İ., Akman, M., & Özbey, T. (2021). Design Comparison of Bodrum Gulets and Tirhandils. 2nd International Congress on Ship and Marine Technology Proceedings, 491–497.
  • Turan, B. İ., & Özcan, A. C. (2023). Investigation of usage distribution in Bodrum Gulets during the blue voyage. Dokuz Eylul University Maritime Faculty Journal, 13(1), 52-73.
There are 32 citations in total.

Details

Primary Language English
Subjects Marine Technology, Marine Main and Auxiliaries
Journal Section Research Articles
Authors

Bülent İbrahim Turan 0000-0001-9690-6955

Early Pub Date December 14, 2023
Publication Date December 27, 2023
Submission Date October 16, 2023
Acceptance Date November 16, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Turan, B. İ. (2023). Investigation on the effects of the number of main engines in sailing yachts in design and engineering perspectives: A case of Bodrum Gulets. Marine and Life Sciences, 5(2), 55-61. https://doi.org/10.51756/marlife.1376592

Flag Counter