Araştırma Makalesi
BibTex RIS Kaynak Göster

Su Arıtımı İçin Deniz Kaynaklı Adsorpsiyon Biyomalzemeleri: Fonksiyonel Balık Kemiği Adsorbanları Kullanılarak Tekstil Boyası Gideriminin Verimliliği ve Kinetiği

Yıl 2025, Cilt: 7 Sayı: 2, 46 - 55
https://doi.org/10.51756/marlife.1745123

Öz

Bu çalışma, endüstriyel atık sularda yaygın olarak bulunan toksik boyar maddelerin gideriminde düşük maliyetli, çevre dostu ve biyolojik kökenli bir adsorban alternatifi sunmaktadır. Balık kemiği gibi atıkların modifikasyonu, sürdürülebilir kaynak kullanımına katkı sağlarken, tekstil, gıda ve kimya endüstrilerinden kaynaklanan boyar madde kirliliğinin azaltılmasında etkin sonuçlar vermektedir. Kinetik ve difüzyon modelleriyle desteklenen adsorpsiyon mekanizması analizleri, bu tür malzemelerin tasarım ve optimizasyonu için önemli veriler sağlamaktadır. Balık kemiği partiküllerinin yüzey modifikasyonu iki aşamalı olarak gerçekleştirilmiş; ilk aşamada, kemik partikülleri (H) 3-aminopropil-trietoksisilan (S) ile silanizasyon işlemi uygulanarak HS ürünü elde edilmiş, ikinci aşamada ise aldehit (2-Ethyl-2H-pyrazole-3-carbaldehyde, A) fonksiyonel grubunun yüzeye bağlanmasıyla HSA formu oluşturulmuştur. Adsorpsiyon deneyleri, farklı başlangıç konsantrasyonlarında (6.76, 3.38, 1.69 ve 0.676 mg/L) fuksin çözeltisi kullanılarak yürütülmüş ve adsorpsiyon kapasitesi (q_e), giderim verimi (%) ile kinetik parametreler detaylı olarak değerlendirilmiştir. Elde edilen sonuçlar, başlangıç konsantrasyonunun artmasıyla birlikte adsorpsiyon kapasitesinde (0.08–0.94 mg/g) belirgin bir artış gözlemlenirken, kinetik analizler, adsorpsiyon sürecinin Pseudo-second-order kinetik modele yüksek derecede uyum sağladığını ve kimyasal etkileşimlerin adsorpsiyonda baskın bir mekanizma olabileceğini göstermiştir.

Proje Numarası

TUBİTAK, Project number: 213M200

Kaynakça

  • Ahmad, F. A. (2023). The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon, 9(6), e16449. https://doi.org/10.1016/j.heliyon.2023.e16449
  • Akhtar, M. S., Ali, S., & Zaman, W. (2024). Innovative adsorbents for pollutant removal: Exploring the latest research and applications. Molecules, 29(18), 4317. https://doi.org/10.3390/molecules29184317
  • Al-Qarhami, F., Khalifa, M. E., Abdallah, A. B., & Awad, F. S. (2025). Remediation of wastewater containing methylene blue and acid fuchsin dyes using 2-aminothiazole chemically modified chitosan. International Journal of Biological Macromolecules, 303, 140744. https://doi.org/10.1016/j.ijbiomac.2025.140744
  • Alvez-Tovar, B., Scalize, P. S., Angiolillo-Rodríguez, G., Albuquerque, A., Ebang, M. N., & de Oliveira, T. F. (2025). Agro-industrial waste upcycling into activated carbons: A sustainable approach for dye removal and wastewater treatment. Sustainability, 17(5), 2036. https://doi.org/10.3390/su17052036
  • Ambade, K., Kumar, A., & Gautam, S. (2024). Sustainable solutions: Reviewing the future of textile dye contaminant removal with emerging biological treatments. Limnological Review, 24(2), 126–149. https://doi.org/10.3390/limnolrev24020007
  • Bayraklı, B. (2023). Utilization of fish by-products for sustainable aquaculture: nutritional analysis of fishmeal derived from the by-products of Oncorhynchus mykiss. Menba Journal of Fisheries Faculty, 9(2), 8–14. https://doi.org/10.58626/menba.1360875
  • Bayraklı, B., & Duyar, H. A. (2019). The effect of raw material freshness on fish oil quality produced in fish meal & oil plant. Journal of Anatolian Environmental and Animal Sciences, 4(3), 473–479. https://doi.org/10.35229/jaes.636002
  • Bayraklı, B., Özdemir, S., & Duyar, H. A. (2019). A study on fishing and fish meal-oil processing technology of anchovy (Engraulis encrasicolus) and European sprat (Sprattus sprattus) in the Black Sea. Menba Journal of Fisheries Faculty, 5(2), 9–16.
  • Bayraklı, B., Yiğit, M., Altuntaş, M., & Maita, M. (2024). Health risk assessment of metals via consumption of Rapa whelk (Rapana venosa) from the Black Sea. Journal of Agricultural Sciences, 30(3), 546–561. https://doi.org/10.15832/ankutbd.1374919
  • Chairat, M., Rattanaphani, S., Bremner, J. B., & Rattanaphani, V. (2006). Adsorption kinetic study of lac dyeing on cotton. Dyes and Pigments, 76(2), 435–439. https://doi.org/10.1016/j.dyepig.2006.09.008
  • Chellapandian, H., Jeyachandran, S., Park, K., & Kwak, I. (2025). Marine-derived functional biomaterials: Advancements in biomedicine and drug delivery applications. Natural Product Communications, 20(6). https://doi.org/10.1177/1934578X241302009
  • Cheung, C., Porter, J., & McKay, G. (2000). Sorption kinetics for the removal of copper and zinc from effluents using bone char. Separation and Purification Technology, 19(1–2), 55–64. https://doi.org/10.1016/s1383-5866(99)00073-8
  • Chiou, M. S., & Li, H. Y. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50(8), 1095–1105. https://doi.org/10.1016/S0045-6535(02)00636-7
  • Chu, K. H., Hashim, M. A., Zawawi, M. H., & Bollinger, J.-C. (2025). The Weber–Morris model in water contaminant adsorption: Shattering long-standing misconceptions. Journal of Environmental Chemical Engineering, 13(4), 117266. https://doi.org/10.1016/j.jece.2025.117266
  • Degano, I., Sabatini, F., Braccini, C., & Colombini, M. P. (2019). Triarylmethine dyes: Characterization of isomers using integrated mass spectrometry. Dyes and Pigments, 160, 587–596. https://doi.org/10.1016/j.dyepig.2018.08.046
  • Dutta, S., Adhikary, S., Bhattacharya, S., Roy, D., Chatterjee, S., Chakraborty, A., Banerjee, D., Ganguly, A., Nanda, S., & Rajak, P. (2024). Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management, 353, 120103. https://doi.org/10.1016/j.jenvman.2024.120103
  • Duyar, H. A., & Bayraklı, B. (2023). Fatty acid profiles of fish oil derived by different techniques from by-products of cultured Black Sea salmon, Oncorhynchus mykiss. Journal of Agricultural Sciences, 29(3), 833–841. https://doi.org/10.15832/ankutbd.1187017
  • El-Sikaily, A., Nemr, A. E., Khaled, A., & Abdelwehab, O. (2007). Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. Journal of Hazardous Materials, 148(1–2), 216–228. https://doi.org/10.1016/j.jhazmat.2007.01.146
  • Freitas, O. M., Martins, R. J., Delerue-Matos, C. M., & Boaventura, R. A. (2008). Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: Kinetic modelling. Journal of Hazardous Materials, 153(1–2), 493–501. https://doi.org/10.1016/j.jhazmat.2007.08.081
  • Greluk, M., & Hubicki, Z. (2009). Sorption of SPADNS azo dye on polystyrene anion exchangers: Equilibrium and kinetic studies. Journal of Hazardous Materials, 172(1), 289–297. https://doi.org/10.1016/j.jhazmat.2009.07.007
  • Hameed, B., Salman, J., & Ahmad, A. (2008). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials, 163(1), 121–126. https://doi.org/10.1016/j.jhazmat.2008.06.069
  • Karabulut, Y. K., & Gürkan, Y. Y. (2023). Investigation of toxicological properties of some azo dyes by OECD QSAR method. Kirklareli University Journal of Engineering and Science, 9(1), 1–22. https://doi.org/10.34186/klujes.1242876
  • Kizilkaya, B. (2012a). Removal of azure a dye from aqueous environment using different pretreated fish bones: equilibrium, kinetic, and diffusion study. Journal of Dispersion Science and Technology, 33(10), 1429–1436. https://doi.org/10.1080/01932691.2011.620896
  • Kizilkaya, B. (2012b). Usage of biogenic apatite (fish bones) on removal of basic fuchsin dye from aqueous solution. Journal of Dispersion Science and Technology, 33(11), 1596–1602. https://doi.org/10.1080/01932691.2011.629497
  • Kizilkaya, B., & Tekinay, A. A. (2011). Comparative study and removal of Co and Ni (II) ions from aqueous solutions using fish bones. Science of Advanced Materials, 3(6), 949–961. https://doi.org/10.1166/sam.2011.1222
  • Kızılkaya, B., Türker, G., Akgül, R., & Doğan, F. (2012a). Comparative study of biosorption of heavy metals using living green algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: Equilibrium and kinetics. Journal of Dispersion Science and Technology, 33(3), 410–419. https://doi.org/10.1080/01932691.2011.567181
  • Kızılkaya, B., Doğan, F., Akgül, R., & Türker, G. (2012b). Biosorption of Co(II), Cr(III), Cd(II), and Pb(II) ions from aqueous solution using nonliving Neochloris pseudoalveolaris Deason & Bold: Equilibrium, thermodynamic, and kinetic study. Journal of Dispersion Science and Technology, 33(7), 1055–1065. https://doi.org/10.1080/01932691.2011.599214
  • Kizilkaya, B., Tan, E., Bahceci, D., Ormanci, H. B., & Oztekin, A. (2018). An investigation on the conversion of functional materials of fish bones as waste products using surface modification methods. Indian Journal of Biotechnology, 17(1), 57-64.
  • Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1–2), 37–47. https://doi.org/10.1016/j.desal.2010.06.076
  • Kizilkaya, B., Ucyol, N., & Tekinay, A. A. (2016). Surface modification of biogenic hydroxyapatite particles with 2-thiophenecarboxaldehyde. Environmental Science: An Indian Journal, 12(7):102.
  • Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001
  • Liu, J., Wei, S., Zhang, H., Deng, Y., Baeyens, J., Dewil, R., Sweygers, N., & Appels, L. (2022). Adsorption of acid fuchsine dye from wastewater by Mg-ferrite particles. Journal of Environmental Management, 317, 115427. https://doi.org/10.1016/j.jenvman.2022.115427
  • Lopičić, Z. R., Stojanović, M. D., Marković, S. B., Milojković, J. V., Mihajlović, M. L., Kaluđerović Radoičić, T. S., & Kijevčanin, M. L. J. (2019). Effects of different mechanical treatments on structural changes of lignocellulosic waste biomass and subsequent Cu(II) removal kinetics. Arabian Journal of Chemistry, 12(8), 4091–4103. https://doi.org/10.1016/j.arabjc.2016.04.005
  • Markandeya, D. M., & Shukla, S. P. (2022). Hazardous consequences of textile mill effluents on soil and their remediation approaches. Cleaner Engineering and Technology, 7, 100434. https://doi.org/10.1016/j.clet.2022.100434
  • Matesun, J., Petrik, L., Musvoto, E., Ayinde, W., & Ikumi, D. (2024). Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. Ecotoxicology and Environmental Safety, 281, 116610. https://doi.org/10.1016/j.ecoenv.2024.116610
  • Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., & Zhang, Z. (2018). A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of Environmental Management, 227, 395–405. https://doi.org/10.1016/j.jenvman.2018.08.069
  • Mohammadzadeh Pakdel, P., Peighambardoust, S. J., Foroutan, R., Arsalani, N., & Aghdasinia, H. (2022). Decontamination of fuchsin dye by carboxymethyl cellulose-graft-poly(acrylic acid-co-itaconic acid)/carbon black nanocomposite hydrogel. International Journal of Biological Macromolecules, 222(Part B), 2083–2097. https://doi.org/10.1016/j.ijbiomac.2022.10.007
  • Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega, 5(33), 20684–20697. https://doi.org/10.1021/acsomega.0c01905
  • Negi, A. (2025). Environmental impact of textile materials: Challenges in fiber–dye chemistry and implication of microbial biodegradation. Polymers, 17(7), 871. https://doi.org/10.3390/polym17070871
  • Rajumon, R., Anand, J. C., Ealias, A. M., Desai, D. S., George, G., & Saravanakumar, M. P. (2019). Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide: An in-depth investigation on sonochemical factors. Journal of Environmental Chemical Engineering, 7(6), 103479. https://doi.org/10.1016/j.jece.2019.103479
  • Rudovica, V., Rotter, A., Gaudêncio, S. P., Novoveská, L., Akgül, F., Akslen-Hoel, L. K., Alexandrino, D. a. M., Anne, O., Arbidans, L., Atanassova, M., Bełdowska, M., Bełdowski, J., Bhatnagar, A., Bikovens, O., Bisters, V., Carvalho, M. F., Catalá, T. S., Dubnika, A., Erdoğan, A., Ferrans, L., Haznedaroğlu, B. Z., Setyobudi, R. H., Graca, B., Grinfelde, I., Hogland, W., Ioannou, E., Jani, Y., Kataržytė, M., Kikionis, S., Klun, K., Kotta, J., Kriipsalu, M., Labidi, J., Lukić Bilela, L., Martínez-Sanz, M., Oliveira, J., Ozola-Davidāne, R., Pilecka-Ulcugaceva, J., Pospíšková, K., Rebours, C., Roussis, V., López-Rubio, A., Šafarík, I., Schmieder, F., Stankevica, K., Tamm, T., Tasdemir, D., Torres, C., Varese, G. C., Vincevica-Gaile, Z., Zekker, I., & Burlakovs, J. (2021). Valorization of marine waste: Use of industrial by-products and beach wrack towards the production of high added-value products. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.723333
  • Satyam, S., & Patra, S. (2024). Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon, 10(9), e29573. https://doi.org/10.1016/j.heliyon.2024.e29573
  • Selatnia, A., Bakhti, M., Madani, A., Kertous, L., & Mansouri, Y. (2004). Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy, 75(1–4), 11–24. https://doi.org/10.1016/j.hydromet.2004.06.005
  • Smičiklas, I., Dimović, S., & Plećaš, I. (2006). Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35(1–2), 139–144. https://doi.org/10.1016/j.clay.2006.08.004
  • Sravan, J. S., Matsakas, L., & Sarkar, O. (2024). Advances in biological wastewater treatment processes: Focus on low-carbon energy and resource recovery in biorefinery context. Bioengineering, 11(3), 281. https://doi.org/10.3390/bioengineering11030281
  • Tamburini, D., Sabatini, F., Berbers, S., van Bommel, M. R., & Degano, I. (2024). An introduction and recent advances in the analytical study of early synthetic dyes and organic pigments in cultural heritage. Heritage, 7(4), 1969–2010. https://doi.org/10.3390/heritage7040094
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222
  • Uranga, J., Etxabide, A., Cabezudo, S., De La Caba, K., & Guerrero, P. (2019). Valorization of marine-derived biowaste to develop chitin/fish gelatin products as bioactive carriers and moisture scavengers. The Science of the Total Environment, 706, 135747. https://doi.org/10.1016/j.scitotenv.2019.135747
  • Urano, K., & Tachikawa, H. (1991). Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. II. Adsorption rates and breakthrough curves. Industrial & Engineering Chemistry Research, 30(8), 1897–1899. https://doi.org/10.1021/ie00056a033
  • Wu, F., Tseng, R., & Juang, R. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal, 153(1–3), 1–8. https://doi.org/10.1016/j.cej.2009.04.042
  • Yao, C., & Chen, T. (2017). A film-diffusion-based adsorption kinetic equation and its application. Chemical Engineering Research and Design, 119, 87–92. https://doi.org/10.1016/j.cherd.2017.01.004
  • Zhang, Z., Lu, Y., Gao, S., & Wu, S. (2025). Sustainable and efficient wastewater treatment using cellulose-based hydrogels: A review of heavy metal, dye, and micropollutant removal applications. Separations, 12(3), 72. https://doi.org/10.3390/separations12030072

Marine-Derived Adsorption Biomaterials for Water Treatment: Efficiency and Kinetics of Textile Dye Removal Using Functionalized Fish Bone Adsorbents

Yıl 2025, Cilt: 7 Sayı: 2, 46 - 55
https://doi.org/10.51756/marlife.1745123

Öz

This study offers a low-cost, environmentally friendly, and biologically derived adsorbent alternative for the removal of toxic dyes commonly found in industrial wastewater. The modification of waste materials such as fish bones contributes to sustainable resource utilization while achieving effective results in reducing dye pollution originating from the textile, food, and chemical industries. Adsorption mechanism analyses supported by kinetic and diffusion models provide valuable insights for the design and optimization of such materials. The surface modification of fish bone particles was carried out in two stages: in the first stage, silanizaion of bone particles (H) with 3-aminopopyltriethoysilane (S) was performed to obtain the HS product; in the second stage, the HSA form was created by binding an aldehyde functional group (2-Ethyl-2H-pyrazole-3-carbaldehyde, A) to the surface. Adsorption experiments were conducted using fuchsine solution at different initial concentrations (6.76, 3.38, 1.69, and 0.676), and adsorption capacity (qₑ), removal efficiency (%), and kinetic parameters were comprehensively evaluated. The results showed a noticeable increase in adsorption capacity (0.08–0.94 mg/g) with increasing initial concentration, while kinetic analyses indicated that the adsorption process followed the pseudo-second-order kinetic model with a high degree of correlation, suggesting that chemical interactions may play a dominant role in the adsorption mechanism.

Etik Beyan

For this type of study, formal consent is not required.

Destekleyen Kurum

TUBİTAK

Proje Numarası

TUBİTAK, Project number: 213M200

Kaynakça

  • Ahmad, F. A. (2023). The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon, 9(6), e16449. https://doi.org/10.1016/j.heliyon.2023.e16449
  • Akhtar, M. S., Ali, S., & Zaman, W. (2024). Innovative adsorbents for pollutant removal: Exploring the latest research and applications. Molecules, 29(18), 4317. https://doi.org/10.3390/molecules29184317
  • Al-Qarhami, F., Khalifa, M. E., Abdallah, A. B., & Awad, F. S. (2025). Remediation of wastewater containing methylene blue and acid fuchsin dyes using 2-aminothiazole chemically modified chitosan. International Journal of Biological Macromolecules, 303, 140744. https://doi.org/10.1016/j.ijbiomac.2025.140744
  • Alvez-Tovar, B., Scalize, P. S., Angiolillo-Rodríguez, G., Albuquerque, A., Ebang, M. N., & de Oliveira, T. F. (2025). Agro-industrial waste upcycling into activated carbons: A sustainable approach for dye removal and wastewater treatment. Sustainability, 17(5), 2036. https://doi.org/10.3390/su17052036
  • Ambade, K., Kumar, A., & Gautam, S. (2024). Sustainable solutions: Reviewing the future of textile dye contaminant removal with emerging biological treatments. Limnological Review, 24(2), 126–149. https://doi.org/10.3390/limnolrev24020007
  • Bayraklı, B. (2023). Utilization of fish by-products for sustainable aquaculture: nutritional analysis of fishmeal derived from the by-products of Oncorhynchus mykiss. Menba Journal of Fisheries Faculty, 9(2), 8–14. https://doi.org/10.58626/menba.1360875
  • Bayraklı, B., & Duyar, H. A. (2019). The effect of raw material freshness on fish oil quality produced in fish meal & oil plant. Journal of Anatolian Environmental and Animal Sciences, 4(3), 473–479. https://doi.org/10.35229/jaes.636002
  • Bayraklı, B., Özdemir, S., & Duyar, H. A. (2019). A study on fishing and fish meal-oil processing technology of anchovy (Engraulis encrasicolus) and European sprat (Sprattus sprattus) in the Black Sea. Menba Journal of Fisheries Faculty, 5(2), 9–16.
  • Bayraklı, B., Yiğit, M., Altuntaş, M., & Maita, M. (2024). Health risk assessment of metals via consumption of Rapa whelk (Rapana venosa) from the Black Sea. Journal of Agricultural Sciences, 30(3), 546–561. https://doi.org/10.15832/ankutbd.1374919
  • Chairat, M., Rattanaphani, S., Bremner, J. B., & Rattanaphani, V. (2006). Adsorption kinetic study of lac dyeing on cotton. Dyes and Pigments, 76(2), 435–439. https://doi.org/10.1016/j.dyepig.2006.09.008
  • Chellapandian, H., Jeyachandran, S., Park, K., & Kwak, I. (2025). Marine-derived functional biomaterials: Advancements in biomedicine and drug delivery applications. Natural Product Communications, 20(6). https://doi.org/10.1177/1934578X241302009
  • Cheung, C., Porter, J., & McKay, G. (2000). Sorption kinetics for the removal of copper and zinc from effluents using bone char. Separation and Purification Technology, 19(1–2), 55–64. https://doi.org/10.1016/s1383-5866(99)00073-8
  • Chiou, M. S., & Li, H. Y. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50(8), 1095–1105. https://doi.org/10.1016/S0045-6535(02)00636-7
  • Chu, K. H., Hashim, M. A., Zawawi, M. H., & Bollinger, J.-C. (2025). The Weber–Morris model in water contaminant adsorption: Shattering long-standing misconceptions. Journal of Environmental Chemical Engineering, 13(4), 117266. https://doi.org/10.1016/j.jece.2025.117266
  • Degano, I., Sabatini, F., Braccini, C., & Colombini, M. P. (2019). Triarylmethine dyes: Characterization of isomers using integrated mass spectrometry. Dyes and Pigments, 160, 587–596. https://doi.org/10.1016/j.dyepig.2018.08.046
  • Dutta, S., Adhikary, S., Bhattacharya, S., Roy, D., Chatterjee, S., Chakraborty, A., Banerjee, D., Ganguly, A., Nanda, S., & Rajak, P. (2024). Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. Journal of Environmental Management, 353, 120103. https://doi.org/10.1016/j.jenvman.2024.120103
  • Duyar, H. A., & Bayraklı, B. (2023). Fatty acid profiles of fish oil derived by different techniques from by-products of cultured Black Sea salmon, Oncorhynchus mykiss. Journal of Agricultural Sciences, 29(3), 833–841. https://doi.org/10.15832/ankutbd.1187017
  • El-Sikaily, A., Nemr, A. E., Khaled, A., & Abdelwehab, O. (2007). Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. Journal of Hazardous Materials, 148(1–2), 216–228. https://doi.org/10.1016/j.jhazmat.2007.01.146
  • Freitas, O. M., Martins, R. J., Delerue-Matos, C. M., & Boaventura, R. A. (2008). Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: Kinetic modelling. Journal of Hazardous Materials, 153(1–2), 493–501. https://doi.org/10.1016/j.jhazmat.2007.08.081
  • Greluk, M., & Hubicki, Z. (2009). Sorption of SPADNS azo dye on polystyrene anion exchangers: Equilibrium and kinetic studies. Journal of Hazardous Materials, 172(1), 289–297. https://doi.org/10.1016/j.jhazmat.2009.07.007
  • Hameed, B., Salman, J., & Ahmad, A. (2008). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. Journal of Hazardous Materials, 163(1), 121–126. https://doi.org/10.1016/j.jhazmat.2008.06.069
  • Karabulut, Y. K., & Gürkan, Y. Y. (2023). Investigation of toxicological properties of some azo dyes by OECD QSAR method. Kirklareli University Journal of Engineering and Science, 9(1), 1–22. https://doi.org/10.34186/klujes.1242876
  • Kizilkaya, B. (2012a). Removal of azure a dye from aqueous environment using different pretreated fish bones: equilibrium, kinetic, and diffusion study. Journal of Dispersion Science and Technology, 33(10), 1429–1436. https://doi.org/10.1080/01932691.2011.620896
  • Kizilkaya, B. (2012b). Usage of biogenic apatite (fish bones) on removal of basic fuchsin dye from aqueous solution. Journal of Dispersion Science and Technology, 33(11), 1596–1602. https://doi.org/10.1080/01932691.2011.629497
  • Kizilkaya, B., & Tekinay, A. A. (2011). Comparative study and removal of Co and Ni (II) ions from aqueous solutions using fish bones. Science of Advanced Materials, 3(6), 949–961. https://doi.org/10.1166/sam.2011.1222
  • Kızılkaya, B., Türker, G., Akgül, R., & Doğan, F. (2012a). Comparative study of biosorption of heavy metals using living green algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: Equilibrium and kinetics. Journal of Dispersion Science and Technology, 33(3), 410–419. https://doi.org/10.1080/01932691.2011.567181
  • Kızılkaya, B., Doğan, F., Akgül, R., & Türker, G. (2012b). Biosorption of Co(II), Cr(III), Cd(II), and Pb(II) ions from aqueous solution using nonliving Neochloris pseudoalveolaris Deason & Bold: Equilibrium, thermodynamic, and kinetic study. Journal of Dispersion Science and Technology, 33(7), 1055–1065. https://doi.org/10.1080/01932691.2011.599214
  • Kizilkaya, B., Tan, E., Bahceci, D., Ormanci, H. B., & Oztekin, A. (2018). An investigation on the conversion of functional materials of fish bones as waste products using surface modification methods. Indian Journal of Biotechnology, 17(1), 57-64.
  • Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1–2), 37–47. https://doi.org/10.1016/j.desal.2010.06.076
  • Kizilkaya, B., Ucyol, N., & Tekinay, A. A. (2016). Surface modification of biogenic hydroxyapatite particles with 2-thiophenecarboxaldehyde. Environmental Science: An Indian Journal, 12(7):102.
  • Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001
  • Liu, J., Wei, S., Zhang, H., Deng, Y., Baeyens, J., Dewil, R., Sweygers, N., & Appels, L. (2022). Adsorption of acid fuchsine dye from wastewater by Mg-ferrite particles. Journal of Environmental Management, 317, 115427. https://doi.org/10.1016/j.jenvman.2022.115427
  • Lopičić, Z. R., Stojanović, M. D., Marković, S. B., Milojković, J. V., Mihajlović, M. L., Kaluđerović Radoičić, T. S., & Kijevčanin, M. L. J. (2019). Effects of different mechanical treatments on structural changes of lignocellulosic waste biomass and subsequent Cu(II) removal kinetics. Arabian Journal of Chemistry, 12(8), 4091–4103. https://doi.org/10.1016/j.arabjc.2016.04.005
  • Markandeya, D. M., & Shukla, S. P. (2022). Hazardous consequences of textile mill effluents on soil and their remediation approaches. Cleaner Engineering and Technology, 7, 100434. https://doi.org/10.1016/j.clet.2022.100434
  • Matesun, J., Petrik, L., Musvoto, E., Ayinde, W., & Ikumi, D. (2024). Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. Ecotoxicology and Environmental Safety, 281, 116610. https://doi.org/10.1016/j.ecoenv.2024.116610
  • Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., & Zhang, Z. (2018). A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. Journal of Environmental Management, 227, 395–405. https://doi.org/10.1016/j.jenvman.2018.08.069
  • Mohammadzadeh Pakdel, P., Peighambardoust, S. J., Foroutan, R., Arsalani, N., & Aghdasinia, H. (2022). Decontamination of fuchsin dye by carboxymethyl cellulose-graft-poly(acrylic acid-co-itaconic acid)/carbon black nanocomposite hydrogel. International Journal of Biological Macromolecules, 222(Part B), 2083–2097. https://doi.org/10.1016/j.ijbiomac.2022.10.007
  • Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega, 5(33), 20684–20697. https://doi.org/10.1021/acsomega.0c01905
  • Negi, A. (2025). Environmental impact of textile materials: Challenges in fiber–dye chemistry and implication of microbial biodegradation. Polymers, 17(7), 871. https://doi.org/10.3390/polym17070871
  • Rajumon, R., Anand, J. C., Ealias, A. M., Desai, D. S., George, G., & Saravanakumar, M. P. (2019). Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide: An in-depth investigation on sonochemical factors. Journal of Environmental Chemical Engineering, 7(6), 103479. https://doi.org/10.1016/j.jece.2019.103479
  • Rudovica, V., Rotter, A., Gaudêncio, S. P., Novoveská, L., Akgül, F., Akslen-Hoel, L. K., Alexandrino, D. a. M., Anne, O., Arbidans, L., Atanassova, M., Bełdowska, M., Bełdowski, J., Bhatnagar, A., Bikovens, O., Bisters, V., Carvalho, M. F., Catalá, T. S., Dubnika, A., Erdoğan, A., Ferrans, L., Haznedaroğlu, B. Z., Setyobudi, R. H., Graca, B., Grinfelde, I., Hogland, W., Ioannou, E., Jani, Y., Kataržytė, M., Kikionis, S., Klun, K., Kotta, J., Kriipsalu, M., Labidi, J., Lukić Bilela, L., Martínez-Sanz, M., Oliveira, J., Ozola-Davidāne, R., Pilecka-Ulcugaceva, J., Pospíšková, K., Rebours, C., Roussis, V., López-Rubio, A., Šafarík, I., Schmieder, F., Stankevica, K., Tamm, T., Tasdemir, D., Torres, C., Varese, G. C., Vincevica-Gaile, Z., Zekker, I., & Burlakovs, J. (2021). Valorization of marine waste: Use of industrial by-products and beach wrack towards the production of high added-value products. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.723333
  • Satyam, S., & Patra, S. (2024). Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon, 10(9), e29573. https://doi.org/10.1016/j.heliyon.2024.e29573
  • Selatnia, A., Bakhti, M., Madani, A., Kertous, L., & Mansouri, Y. (2004). Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy, 75(1–4), 11–24. https://doi.org/10.1016/j.hydromet.2004.06.005
  • Smičiklas, I., Dimović, S., & Plećaš, I. (2006). Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35(1–2), 139–144. https://doi.org/10.1016/j.clay.2006.08.004
  • Sravan, J. S., Matsakas, L., & Sarkar, O. (2024). Advances in biological wastewater treatment processes: Focus on low-carbon energy and resource recovery in biorefinery context. Bioengineering, 11(3), 281. https://doi.org/10.3390/bioengineering11030281
  • Tamburini, D., Sabatini, F., Berbers, S., van Bommel, M. R., & Degano, I. (2024). An introduction and recent advances in the analytical study of early synthetic dyes and organic pigments in cultural heritage. Heritage, 7(4), 1969–2010. https://doi.org/10.3390/heritage7040094
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222
  • Uranga, J., Etxabide, A., Cabezudo, S., De La Caba, K., & Guerrero, P. (2019). Valorization of marine-derived biowaste to develop chitin/fish gelatin products as bioactive carriers and moisture scavengers. The Science of the Total Environment, 706, 135747. https://doi.org/10.1016/j.scitotenv.2019.135747
  • Urano, K., & Tachikawa, H. (1991). Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. II. Adsorption rates and breakthrough curves. Industrial & Engineering Chemistry Research, 30(8), 1897–1899. https://doi.org/10.1021/ie00056a033
  • Wu, F., Tseng, R., & Juang, R. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal, 153(1–3), 1–8. https://doi.org/10.1016/j.cej.2009.04.042
  • Yao, C., & Chen, T. (2017). A film-diffusion-based adsorption kinetic equation and its application. Chemical Engineering Research and Design, 119, 87–92. https://doi.org/10.1016/j.cherd.2017.01.004
  • Zhang, Z., Lu, Y., Gao, S., & Wu, S. (2025). Sustainable and efficient wastewater treatment using cellulose-based hydrogels: A review of heavy metal, dye, and micropollutant removal applications. Separations, 12(3), 72. https://doi.org/10.3390/separations12030072
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Su Kalitesi ve Su Kirliliği
Bölüm Araştırma Makaleleri
Yazarlar

Bayram Kızılkaya 0000-0002-3916-3734

Proje Numarası TUBİTAK, Project number: 213M200
Erken Görünüm Tarihi 25 Eylül 2025
Yayımlanma Tarihi 29 Eylül 2025
Gönderilme Tarihi 17 Temmuz 2025
Kabul Tarihi 31 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Kızılkaya, B. (2025). Marine-Derived Adsorption Biomaterials for Water Treatment: Efficiency and Kinetics of Textile Dye Removal Using Functionalized Fish Bone Adsorbents. Marine and Life Sciences, 7(2), 46-55. https://doi.org/10.51756/marlife.1745123
Flag Counter