BibTex RIS Kaynak Göster

On The Para-Octonions; a Non-Associative Normed Algebra

Yıl 2016, Cilt: 28 Sayı: 3, 95 - 99, 31.12.2016
https://doi.org/10.7240/mufbed.36025

Öz

In this paper, para-octonions and their algebraic properties are provided by using the Cayley-Dickson multiplication rule between the octonionic

basis elements. The trigonometric form of a para-octonion is similar to the trigonometric form of dual number and quasi-quaternion.

We study the De-Moivre’s theorem for para-octonions, extending results obtained for real octonions and defining generalize Euler’s

formula for para-octonions.

Kaynakça

  • Flaut, C., & Shpakivskyi V., (2015). An efficient method for solving equations in generalized quaternion and octonion algebras, Advance in Applied Clifford algebra, 25 (2), 337– 350.
  • Jafari M., On the Properties of Quasi-Quaternions Algebra, (2014). Communications, faculty of science, university of Ankara, Series A1: Mathematics and statistics, 63(1), 1-10.
  • Jafari M., (2015). A viewpoint on semi-octonion algebra, Journal of Selcuk university natural and applied science, 4(4), 46-53.
  • Jafari M., (2015). Split Octonion Analysis, Representation Theory and Geometry, Submitted for publication.
  • Jafari M., Azanchiler H., (2015). On the structure of the octonion matrices, Submitted for publication.
  • Jafari M., (2015). An Introduction to Quasi-Octonions and Their Representation,
  • Mortazaasl H., Jafari M., (2013). A study on Semi-quaternions Algebra in Semi-Euclidean 4-Space, Mathematical Sciences and Applications E-Notes, 1(2) 20-27.
  • Jafari M., (2015). The Fundamental Algebraic Properties of Split Quasi-Octonions, DOI: 10. 13140/RG .2.1.3348.2728
  • Rosenfeld B. A., Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht, 1997.

Para-Ktonyonlar Üzerine; Bir İlişkisel Olmayan Normlu Cebir

Yıl 2016, Cilt: 28 Sayı: 3, 95 - 99, 31.12.2016
https://doi.org/10.7240/mufbed.36025

Öz

Bu çalışmada, octonyonik baz elemanları arasında Cayley-Dickson çarpım kuralı kullanılarak para-octonyonlar ve cebirsel özellikleri verilmiştir.

Bir para-octonyonun trigonometrik formu bir dual-sayının ve bir quasi-kuaterniyonun trigonometrik formuna benzerdir. Para-octonyonlar

içn De-Moivre’nin teoremi ele alınarak reel-octonyonlar için elde edilen sonuçlar genelleştirilmiştir. Ayrıca, para-octonyonlar

için genel Euler formülleri tanımlanmıştır.

Kaynakça

  • Flaut, C., & Shpakivskyi V., (2015). An efficient method for solving equations in generalized quaternion and octonion algebras, Advance in Applied Clifford algebra, 25 (2), 337– 350.
  • Jafari M., On the Properties of Quasi-Quaternions Algebra, (2014). Communications, faculty of science, university of Ankara, Series A1: Mathematics and statistics, 63(1), 1-10.
  • Jafari M., (2015). A viewpoint on semi-octonion algebra, Journal of Selcuk university natural and applied science, 4(4), 46-53.
  • Jafari M., (2015). Split Octonion Analysis, Representation Theory and Geometry, Submitted for publication.
  • Jafari M., Azanchiler H., (2015). On the structure of the octonion matrices, Submitted for publication.
  • Jafari M., (2015). An Introduction to Quasi-Octonions and Their Representation,
  • Mortazaasl H., Jafari M., (2013). A study on Semi-quaternions Algebra in Semi-Euclidean 4-Space, Mathematical Sciences and Applications E-Notes, 1(2) 20-27.
  • Jafari M., (2015). The Fundamental Algebraic Properties of Split Quasi-Octonions, DOI: 10. 13140/RG .2.1.3348.2728
  • Rosenfeld B. A., Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht, 1997.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mehdi Jafarı

Yayımlanma Tarihi 31 Aralık 2016
Kabul Tarihi 6 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 28 Sayı: 3

Kaynak Göster

APA Jafarı, M. (2016). On The Para-Octonions; a Non-Associative Normed Algebra. Marmara Fen Bilimleri Dergisi, 28(3), 95-99. https://doi.org/10.7240/mufbed.36025
AMA Jafarı M. On The Para-Octonions; a Non-Associative Normed Algebra. MFBD. Aralık 2016;28(3):95-99. doi:10.7240/mufbed.36025
Chicago Jafarı, Mehdi. “On The Para-Octonions; A Non-Associative Normed Algebra”. Marmara Fen Bilimleri Dergisi 28, sy. 3 (Aralık 2016): 95-99. https://doi.org/10.7240/mufbed.36025.
EndNote Jafarı M (01 Aralık 2016) On The Para-Octonions; a Non-Associative Normed Algebra. Marmara Fen Bilimleri Dergisi 28 3 95–99.
IEEE M. Jafarı, “On The Para-Octonions; a Non-Associative Normed Algebra”, MFBD, c. 28, sy. 3, ss. 95–99, 2016, doi: 10.7240/mufbed.36025.
ISNAD Jafarı, Mehdi. “On The Para-Octonions; A Non-Associative Normed Algebra”. Marmara Fen Bilimleri Dergisi 28/3 (Aralık 2016), 95-99. https://doi.org/10.7240/mufbed.36025.
JAMA Jafarı M. On The Para-Octonions; a Non-Associative Normed Algebra. MFBD. 2016;28:95–99.
MLA Jafarı, Mehdi. “On The Para-Octonions; A Non-Associative Normed Algebra”. Marmara Fen Bilimleri Dergisi, c. 28, sy. 3, 2016, ss. 95-99, doi:10.7240/mufbed.36025.
Vancouver Jafarı M. On The Para-Octonions; a Non-Associative Normed Algebra. MFBD. 2016;28(3):95-9.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr