Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektromanyetik Yataklı Rotorların MIMO PID Kontrolu

Yıl 2018, Cilt: 30 Sayı: 1, 26 - 39, 31.03.2018
https://doi.org/10.7240/marufbd.341062

Öz











Elektromanyetik
yataklı rotorlar kararsız sistemler oldukları için geribeslemeli kontrol
çalışma şartlarının ayrılmaz bir parçasıdır. Rotor dinamiği sabit hızda doğrusal
ve zamanla değişmeyen özellikte olmakla birlikte, elektromanyetik yatak
dinamiği doğrusal değildir. Doğrusal olmayan yatak dinamiği sabit bir sapma
akımı kullanılarak bir çalışma noktası civarında doğrusallaştırılabilir. Bu
makalede yatay rotor/aktif manyetik yataklı sistemler için MIMO PID kontrolör
tasarlayarak SISO PID kontrol ile performansını karşılaştırmaktayız. Rotor
dinamiğindeki dinamik eşleşme birbirine dik yönlerde jiroskopik kuvvetler oluşturmaktadır.
Eşleşik (dinamik) dengesizlik kuvvetler nedeniyle oluşabilecek yanal yönlerdeki
açısal hareketlerin meydana getirdiği jiroskopik kuvvetlerin kompanzasyonu için
SISO PID kontrol yeterli performansa sahip değildir.

Kaynakça

  • 1. Burrows C.R., Sahinkaya N., Traxler A., and Schweitzer G. (1988) Design and application of a magnetic bearing for vibration control and stabilization of a flexible rotor, 1st International Symposium on Magnetic Bearings, pp. 159-168.
  • 2. Herzog R., Bühler P., Gähler C., and Larsonneur R. (1996) Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings. IEEE Transactions on Control Systems Technology, vol. 4, no. 5, pp. 580-586.
  • 3. Kuseyri S. (2012) Robust control and unbalance compensation of rotor/active magnetic bearing systems, Journal of Vibration and Control, 12: 817-832.
  • 4. Cao, Y.-Y., Lam, J., and Sun, Y.-X. (1998) Static output feedback stabilization: An ILMI approach, Automatica, vol. 34, pp. 1641-1645.
  • 5. Fujita M., Hatake K., and Matsumura F. (1993) Loop shaping based robust control of a magnetic bearing, IEEE Control Systems Magazine, vol. 13, no. 4, pp. 57-65.
  • 6. Gahinet P. and Apkarian P. (1994) A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control, vol. 4, pp. 421-448.
  • 7. Sturm J.F. (1999) Using SEDUMI 1.02: A MATLAB®Toolbox for Optimization Over Symmetric Cones, Optimization Methods and Software, 11(12), pp. 625-653. 8. Fittro R.L. and Knospe C.R. (2002) The mu approach to control of active magnetic bearings, Journal of Engineering for Gas Turbines and Power, vol. 124, no. 3, pp. 566-570.
  • 9. Sivrioğlu S. and Nanomi K. (1996) LMI approach to gain scheduled H∞ beyond PID control for gyroscopic rotor-magnetic bearing system, Proceedings of the 35th Conference on Decision and Control, pp. 3694-3699.
  • 10. Schweitzer G. and Maslen E. (Editors) (2009) Magnetic Bearings. Springer-Verlag, Heidelberg.
  • 11. Zheng F., Wang Q.G., and Lee T.H. (2002) On the design of multivariable PID controllers via LMI approach, Automatica, vol.38, pp. 517-526.
  • 12. Boyd S., Hast M., and Astrom K.J. (2016) MIMO PID tuning via iterated LMI restriction, Int. J. Robust Nonlinear Control, vol. 26, pp. 1718-1731.
  • 13. Syrmos, V. L., Abdallah, C. T., Dorato, P., and Grigoriadis, K. (1997) Static output feedback survey. Automatica, vol.33, pp.125-137.
  • 14. Köroğlu H., and Falcone P. (2014) New LMI conditions for static output feedback synthesis with multiple performance objectives. Proceedings of IEEE 53rd Annual Conference on Decision and Control, DOI: 10.1109/CDC.2014.7039490.
  • 15. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994) Linear matrix inequalities in system and control theory. Philadelphia: SIAM.
  • 16. Lösch F. (2002) Identification and Automated Controller Design for Active Magnetic Bearing Systems. Ph.D. Thesis, ETH Zurich. 17. Löfberg J. (2004) YALMIP: A toolbox for modeling and optimization in MATLAB®, Proceedings of the CACSD Conference, Taipei, Taiwan.

MIMO PID Control of Rotors with Electromagnetic Bearings

Yıl 2018, Cilt: 30 Sayı: 1, 26 - 39, 31.03.2018
https://doi.org/10.7240/marufbd.341062

Öz

Rotors with electromagnetic bearings are inherently
unstable systems; hence feedback control is an integral part of  their operation.  While the rotor dynamics is linear and
time-invariant  at  constant 
operation  speed,  electromagnetic bearing  model 
is  non-linear. Non-linear bearing
dynamics can be linearized at an operating point using a constant bias current.
In this paper we design a MIMO PID controller for horizontal rotor/active
magnetic bearing systems and compare its performance with respect to SISO
decentralized PID control. Dynamic coupling in rotor dynamics causes gyroscopic
forces to act at orthogonal directions on the rotor. SISO PID control lacks  su
fficient 
performance  as  it 
has  limited capability to
compensate for the gyroscopic e
ffects due to angular motions in transverse directions
which can be caused by couple (dynamic) unbalance forces. 

Kaynakça

  • 1. Burrows C.R., Sahinkaya N., Traxler A., and Schweitzer G. (1988) Design and application of a magnetic bearing for vibration control and stabilization of a flexible rotor, 1st International Symposium on Magnetic Bearings, pp. 159-168.
  • 2. Herzog R., Bühler P., Gähler C., and Larsonneur R. (1996) Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings. IEEE Transactions on Control Systems Technology, vol. 4, no. 5, pp. 580-586.
  • 3. Kuseyri S. (2012) Robust control and unbalance compensation of rotor/active magnetic bearing systems, Journal of Vibration and Control, 12: 817-832.
  • 4. Cao, Y.-Y., Lam, J., and Sun, Y.-X. (1998) Static output feedback stabilization: An ILMI approach, Automatica, vol. 34, pp. 1641-1645.
  • 5. Fujita M., Hatake K., and Matsumura F. (1993) Loop shaping based robust control of a magnetic bearing, IEEE Control Systems Magazine, vol. 13, no. 4, pp. 57-65.
  • 6. Gahinet P. and Apkarian P. (1994) A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control, vol. 4, pp. 421-448.
  • 7. Sturm J.F. (1999) Using SEDUMI 1.02: A MATLAB®Toolbox for Optimization Over Symmetric Cones, Optimization Methods and Software, 11(12), pp. 625-653. 8. Fittro R.L. and Knospe C.R. (2002) The mu approach to control of active magnetic bearings, Journal of Engineering for Gas Turbines and Power, vol. 124, no. 3, pp. 566-570.
  • 9. Sivrioğlu S. and Nanomi K. (1996) LMI approach to gain scheduled H∞ beyond PID control for gyroscopic rotor-magnetic bearing system, Proceedings of the 35th Conference on Decision and Control, pp. 3694-3699.
  • 10. Schweitzer G. and Maslen E. (Editors) (2009) Magnetic Bearings. Springer-Verlag, Heidelberg.
  • 11. Zheng F., Wang Q.G., and Lee T.H. (2002) On the design of multivariable PID controllers via LMI approach, Automatica, vol.38, pp. 517-526.
  • 12. Boyd S., Hast M., and Astrom K.J. (2016) MIMO PID tuning via iterated LMI restriction, Int. J. Robust Nonlinear Control, vol. 26, pp. 1718-1731.
  • 13. Syrmos, V. L., Abdallah, C. T., Dorato, P., and Grigoriadis, K. (1997) Static output feedback survey. Automatica, vol.33, pp.125-137.
  • 14. Köroğlu H., and Falcone P. (2014) New LMI conditions for static output feedback synthesis with multiple performance objectives. Proceedings of IEEE 53rd Annual Conference on Decision and Control, DOI: 10.1109/CDC.2014.7039490.
  • 15. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994) Linear matrix inequalities in system and control theory. Philadelphia: SIAM.
  • 16. Lösch F. (2002) Identification and Automated Controller Design for Active Magnetic Bearing Systems. Ph.D. Thesis, ETH Zurich. 17. Löfberg J. (2004) YALMIP: A toolbox for modeling and optimization in MATLAB®, Proceedings of the CACSD Conference, Taipei, Taiwan.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

İbrahim Sina Kuseyri

Yayımlanma Tarihi 31 Mart 2018
Kabul Tarihi 30 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 1

Kaynak Göster

APA Kuseyri, İ. S. (2018). MIMO PID Control of Rotors with Electromagnetic Bearings. Marmara Fen Bilimleri Dergisi, 30(1), 26-39. https://doi.org/10.7240/marufbd.341062
AMA Kuseyri İS. MIMO PID Control of Rotors with Electromagnetic Bearings. MFBD. Mart 2018;30(1):26-39. doi:10.7240/marufbd.341062
Chicago Kuseyri, İbrahim Sina. “MIMO PID Control of Rotors With Electromagnetic Bearings”. Marmara Fen Bilimleri Dergisi 30, sy. 1 (Mart 2018): 26-39. https://doi.org/10.7240/marufbd.341062.
EndNote Kuseyri İS (01 Mart 2018) MIMO PID Control of Rotors with Electromagnetic Bearings. Marmara Fen Bilimleri Dergisi 30 1 26–39.
IEEE İ. S. Kuseyri, “MIMO PID Control of Rotors with Electromagnetic Bearings”, MFBD, c. 30, sy. 1, ss. 26–39, 2018, doi: 10.7240/marufbd.341062.
ISNAD Kuseyri, İbrahim Sina. “MIMO PID Control of Rotors With Electromagnetic Bearings”. Marmara Fen Bilimleri Dergisi 30/1 (Mart 2018), 26-39. https://doi.org/10.7240/marufbd.341062.
JAMA Kuseyri İS. MIMO PID Control of Rotors with Electromagnetic Bearings. MFBD. 2018;30:26–39.
MLA Kuseyri, İbrahim Sina. “MIMO PID Control of Rotors With Electromagnetic Bearings”. Marmara Fen Bilimleri Dergisi, c. 30, sy. 1, 2018, ss. 26-39, doi:10.7240/marufbd.341062.
Vancouver Kuseyri İS. MIMO PID Control of Rotors with Electromagnetic Bearings. MFBD. 2018;30(1):26-39.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr