Araştırma Makalesi
BibTex RIS Kaynak Göster

Ortalama Karesel Hata Matrisi Kriterine göre Yanlı Tahmin Ediciler Üzerine Çalışma

Yıl 2018, Cilt: 30 Sayı: 1, 18 - 25, 31.03.2018
https://doi.org/10.7240/marufbd.371450

Öz

Çoklu doğrusallığa sahip regresyon modelleri, r- (k, d)
sınıfı tahmincileri, ana bileşen regresyonu, Liu tipi tahminciler gibi çeşitli
tahmincileri kullanarak ele alınabilir. Bu çalışmada, r- (k, d) sınıfı kestiricisinin,
ana bileşenlerin regresyonu, Liu tipi tahmincileri ve sıradan en küçük kareler
üzerinde, ortalama karesel hata matrisi (MSEM) kriteri açısından üstün olduğu
koşulları belirledik. Son olarak, sayısal bir örnek ve Monte Carlo simülasyonu
ile teorik sonuçları gösterdik.

Kaynakça

  • [1] Stein, C., Inadmissibility of the usual estimator for mean of multivariate normal distribution. In Neyman J (ed). Proceedings of the third Berkley symposium on mathematical and statistics probability 1, (1956), 197–206. [2] Inan, D., Combining the Liu-type estimator and the principal component regression estimator. Statistical Papers 56, (2015), 147-156. [3] Rao, C. and Toutenburg, H., Linear Models: Least Squares and Alternatives. New York:Springer-Verlag Inc. 1995. [4] Trenkler, G., Mean Square Error Matrix Comparisons of Estimators in Linear Regression. Communications in Statistics Theory and Methods A.14,( 1985) 2495–2509. [5] Trenkler, G. and Toutenburg, H., Mean squared error matrix comparisons between biased estimators an overview of recent results, Statistical Paper 31 (1990 )165–179. [6] Baksalary, J.K. and Trenkler, G., Nonnegative and positive definiteness of matrices modified by two matrices of rank one, Linear Algebra and Its Application 151, (1991), 169–184. [7] Graybill, F.A., Theory and Application of the Linear Model. Duxbury Press, North Scituate, Massachusetts,1976. [8] Woods, H., Steinour , H.H. and Starke. H.R., Effect of composition of Portland cement on heat evolved during hardening, Industrial and Engineering Chemistry 24, (1932),1207–1214. [9] Kaçıranlar, S., Sakallioglu, S., Akdeniz, F., Styan, G.P.H. and Werner. H.J., A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland Cement, Sankhya Indian J Stat 61(B),( 1999), 443–459. [10] Liu, K., Using Liu-type estimator to combat collinearity, Communications in Statistics Theory and Methods 32. (5), (2003),1009–1020. [11] Kibria. B.M.G., Performance of some new ridge regression estimators, Communications in Statistics - Simulation and Computation. 32, (2003),2389-2413.

The Research on Biased Estimators Based on Mean Square Error Matrix Criteria

Yıl 2018, Cilt: 30 Sayı: 1, 18 - 25, 31.03.2018
https://doi.org/10.7240/marufbd.371450

Öz

Regression models with
multicollinearity can be tackled by using various estimators such as
  class estimators, principal
components regression, Liu-type estimators. In this study, we defined
conditions where the
  class estimator is superior over
the biased estimators in terms of mean square error matrix (MSEM) criterion.
Finally, we showed theoretical results by means of a numerical example and a
simulation study.

Kaynakça

  • [1] Stein, C., Inadmissibility of the usual estimator for mean of multivariate normal distribution. In Neyman J (ed). Proceedings of the third Berkley symposium on mathematical and statistics probability 1, (1956), 197–206. [2] Inan, D., Combining the Liu-type estimator and the principal component regression estimator. Statistical Papers 56, (2015), 147-156. [3] Rao, C. and Toutenburg, H., Linear Models: Least Squares and Alternatives. New York:Springer-Verlag Inc. 1995. [4] Trenkler, G., Mean Square Error Matrix Comparisons of Estimators in Linear Regression. Communications in Statistics Theory and Methods A.14,( 1985) 2495–2509. [5] Trenkler, G. and Toutenburg, H., Mean squared error matrix comparisons between biased estimators an overview of recent results, Statistical Paper 31 (1990 )165–179. [6] Baksalary, J.K. and Trenkler, G., Nonnegative and positive definiteness of matrices modified by two matrices of rank one, Linear Algebra and Its Application 151, (1991), 169–184. [7] Graybill, F.A., Theory and Application of the Linear Model. Duxbury Press, North Scituate, Massachusetts,1976. [8] Woods, H., Steinour , H.H. and Starke. H.R., Effect of composition of Portland cement on heat evolved during hardening, Industrial and Engineering Chemistry 24, (1932),1207–1214. [9] Kaçıranlar, S., Sakallioglu, S., Akdeniz, F., Styan, G.P.H. and Werner. H.J., A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland Cement, Sankhya Indian J Stat 61(B),( 1999), 443–459. [10] Liu, K., Using Liu-type estimator to combat collinearity, Communications in Statistics Theory and Methods 32. (5), (2003),1009–1020. [11] Kibria. B.M.G., Performance of some new ridge regression estimators, Communications in Statistics - Simulation and Computation. 32, (2003),2389-2413.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Nilgün Yıldız

Yayımlanma Tarihi 31 Mart 2018
Kabul Tarihi 30 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 1

Kaynak Göster

APA Yıldız, N. (2018). The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. Marmara Fen Bilimleri Dergisi, 30(1), 18-25. https://doi.org/10.7240/marufbd.371450
AMA Yıldız N. The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. MFBD. Mart 2018;30(1):18-25. doi:10.7240/marufbd.371450
Chicago Yıldız, Nilgün. “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”. Marmara Fen Bilimleri Dergisi 30, sy. 1 (Mart 2018): 18-25. https://doi.org/10.7240/marufbd.371450.
EndNote Yıldız N (01 Mart 2018) The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. Marmara Fen Bilimleri Dergisi 30 1 18–25.
IEEE N. Yıldız, “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”, MFBD, c. 30, sy. 1, ss. 18–25, 2018, doi: 10.7240/marufbd.371450.
ISNAD Yıldız, Nilgün. “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”. Marmara Fen Bilimleri Dergisi 30/1 (Mart 2018), 18-25. https://doi.org/10.7240/marufbd.371450.
JAMA Yıldız N. The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. MFBD. 2018;30:18–25.
MLA Yıldız, Nilgün. “The Research on Biased Estimators Based on Mean Square Error Matrix Criteria”. Marmara Fen Bilimleri Dergisi, c. 30, sy. 1, 2018, ss. 18-25, doi:10.7240/marufbd.371450.
Vancouver Yıldız N. The Research on Biased Estimators Based on Mean Square Error Matrix Criteria. MFBD. 2018;30(1):18-25.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr