Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri

Yıl 2018, Cilt: 30 Sayı: 3, 276 - 285, 30.09.2018
https://doi.org/10.7240/marufbd.412069

Öz

Bu makalede (1.1) ile verilen iterasyon yönteminden daha sade olan yeni bir iterasyon yöntemi tanımlanmıştır. Bu iterasyon
yönteminin hemen hemen büzülme dönüşümü şartını sağlayan iki operatörün ortak sabit noktasına yakınsak olduğu ispatlanmıştır.
Ayrıca yeni iterasyon yönteminin (1.1) ile verilen iterasyon yönteminden daha hızlı olduğu gösterilmiştir ve bu sonucu destekleyen
bir tablo ile grafik verilmiştir. Son olarak, hemen hemen büzülme dönüşümü şartını sağlayan iki operatör için yeni tanımlanan
iterasyon kullanılarak veri bağlılığı sonucu elde edilmiştir.

Kaynakça

  • [1] Picard, E. (1890). Mémoire Sur la Théorie des Équations Aux Dérivées Partielles et la Méthode des Approximations Successives. Journal de mathématiques pures et appliquées, 6, 145-210.
  • [2] Abbas, M. ve Nazir, T. (2014). A New Faster Iteration Process Applied to Constrained Minimization and Feasibility Problems. Matematıčkı Vesnıck, 66 (2), 223-234. [3] Agarwal, R., O Regan, D. ve Sahu, D. (2007). Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings. Journal of Nonlinear and Convex Analysis, 8 (1), 61-79.
  • [4] Chugh, R., Kumar, V. ve Kumar, S. (2012). Strong Convergence of a New Three Step Iterative Scheme in Banach Spaces. American Journal of Computational Mathematics, 2, 345-357.
  • [5] Dogan, K. ve Karakaya, V. (2014). On the Convergence and Stability Results for a New General Iterative Process. The Scientific World Journal, 2014, 1-8.
  • [6] Gürsoy, Karakaya, V. ve Rhoades, B.E. (2013). Data dependence results of new multi-step and S-iterative schemes for contractive-like operators. Fixed Point Theory and Applications, 2013, 1-12.
  • [7] Gürsoy, F. ve Karakaya, V. (2014). A Picard-S Hybrid Type Iteration Method for Solving a Differential Equation with Retarded Argument. arXiv preprint arXiv:1403.2546.
  • [8] Ishikawa, S. (1974). Fixed Point By a New Iteration Method. Proceedings of the American Mathematical Society, 44, 147-150.
  • [9] Karahan, I. ve Ozdemir, M. (2013). A General Iterative Method for Approximation of Fixed Points and Their Applications. Advances in Fixed Point Theory, 3 (3), 510-526.
  • [10] Phuengrattana, W. ve Suantai, S. (2012). Comparison of the Rate of Convergence of Various Iterative Methods for the Class of Weak Contractions in Banach Spaces. Thai Journal of Mathematics, 11 (1), 217-226.
  • [11] Karakaya, V. Doğan, K. Gürsoy, F. ve Ertürk, M. (2013). Fixed Point of a New Three-Step Iteration Algorithm Under Contractive-Like Operators Over Normed Spaces. Abstract and Applied Analysis, 2013, 1-9.
  • [12] Mann, W.R. (1953). Mean Value Methods in Iteration. Proceedings of the American Mathematical Society, 4 (3), 506-510.
  • [13] Noor, M.A. (2000). New Approximation Schemes for General Variational Inequalities. Journal of Mathematical Analysis and Applications, 251 (1), 217-229.
  • [14] Osilike, M. (1995). Stability Results for Fixed Point Iteration Procedures. Journal of the Nigerian Mathematical Society, 14 (15), 17-29.
  • [15] Pheungrattana, W. ve Suantai, S. (2011). On the Rate of Convergence of Mann, Ishikawa, Noor and SP Iterations for Continuous on an Arbitrary Interval. Journal of Computational and Applied Mathematics, 235, 3006-3014.
  • [16] Khan, S.H. (2013). A Picard-Mann Hybrid Iterative Process. Fixed point Theory and Applications, 69, 1-10.
  • [17] Khan, S. H. (2011). Common fixed points of quasi-contractive type operators by a generalized iterative process. IAENG International Journal of Applied Mathematics, 41(3), 260-264.
  • [18] Weng, X. (1991). Fixed Point Iteration for Local Strictly Pseudo-Contractive Mapping. Proceedings of the American Mathematical Society, 113 (3), 727-731.
  • [19] Şoltuz, S.M. ve Grosan, T. (2008). Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory and Applications, 2008, 1-7.
  • [20] Berinde, V. (2003). On The Approximation of Fixed Points of Weak Contractive Mappings. Carpathian J. Math., 19 (1), 7-22.
Yıl 2018, Cilt: 30 Sayı: 3, 276 - 285, 30.09.2018
https://doi.org/10.7240/marufbd.412069

Öz

Kaynakça

  • [1] Picard, E. (1890). Mémoire Sur la Théorie des Équations Aux Dérivées Partielles et la Méthode des Approximations Successives. Journal de mathématiques pures et appliquées, 6, 145-210.
  • [2] Abbas, M. ve Nazir, T. (2014). A New Faster Iteration Process Applied to Constrained Minimization and Feasibility Problems. Matematıčkı Vesnıck, 66 (2), 223-234. [3] Agarwal, R., O Regan, D. ve Sahu, D. (2007). Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings. Journal of Nonlinear and Convex Analysis, 8 (1), 61-79.
  • [4] Chugh, R., Kumar, V. ve Kumar, S. (2012). Strong Convergence of a New Three Step Iterative Scheme in Banach Spaces. American Journal of Computational Mathematics, 2, 345-357.
  • [5] Dogan, K. ve Karakaya, V. (2014). On the Convergence and Stability Results for a New General Iterative Process. The Scientific World Journal, 2014, 1-8.
  • [6] Gürsoy, Karakaya, V. ve Rhoades, B.E. (2013). Data dependence results of new multi-step and S-iterative schemes for contractive-like operators. Fixed Point Theory and Applications, 2013, 1-12.
  • [7] Gürsoy, F. ve Karakaya, V. (2014). A Picard-S Hybrid Type Iteration Method for Solving a Differential Equation with Retarded Argument. arXiv preprint arXiv:1403.2546.
  • [8] Ishikawa, S. (1974). Fixed Point By a New Iteration Method. Proceedings of the American Mathematical Society, 44, 147-150.
  • [9] Karahan, I. ve Ozdemir, M. (2013). A General Iterative Method for Approximation of Fixed Points and Their Applications. Advances in Fixed Point Theory, 3 (3), 510-526.
  • [10] Phuengrattana, W. ve Suantai, S. (2012). Comparison of the Rate of Convergence of Various Iterative Methods for the Class of Weak Contractions in Banach Spaces. Thai Journal of Mathematics, 11 (1), 217-226.
  • [11] Karakaya, V. Doğan, K. Gürsoy, F. ve Ertürk, M. (2013). Fixed Point of a New Three-Step Iteration Algorithm Under Contractive-Like Operators Over Normed Spaces. Abstract and Applied Analysis, 2013, 1-9.
  • [12] Mann, W.R. (1953). Mean Value Methods in Iteration. Proceedings of the American Mathematical Society, 4 (3), 506-510.
  • [13] Noor, M.A. (2000). New Approximation Schemes for General Variational Inequalities. Journal of Mathematical Analysis and Applications, 251 (1), 217-229.
  • [14] Osilike, M. (1995). Stability Results for Fixed Point Iteration Procedures. Journal of the Nigerian Mathematical Society, 14 (15), 17-29.
  • [15] Pheungrattana, W. ve Suantai, S. (2011). On the Rate of Convergence of Mann, Ishikawa, Noor and SP Iterations for Continuous on an Arbitrary Interval. Journal of Computational and Applied Mathematics, 235, 3006-3014.
  • [16] Khan, S.H. (2013). A Picard-Mann Hybrid Iterative Process. Fixed point Theory and Applications, 69, 1-10.
  • [17] Khan, S. H. (2011). Common fixed points of quasi-contractive type operators by a generalized iterative process. IAENG International Journal of Applied Mathematics, 41(3), 260-264.
  • [18] Weng, X. (1991). Fixed Point Iteration for Local Strictly Pseudo-Contractive Mapping. Proceedings of the American Mathematical Society, 113 (3), 727-731.
  • [19] Şoltuz, S.M. ve Grosan, T. (2008). Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory and Applications, 2008, 1-7.
  • [20] Berinde, V. (2003). On The Approximation of Fixed Points of Weak Contractive Mappings. Carpathian J. Math., 19 (1), 7-22.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Yunus Atalan 0000-0002-5912-7087

Yayımlanma Tarihi 30 Eylül 2018
Kabul Tarihi 26 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 3

Kaynak Göster

APA Atalan, Y. (2018). Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri. Marmara Fen Bilimleri Dergisi, 30(3), 276-285. https://doi.org/10.7240/marufbd.412069
AMA Atalan Y. Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri. MFBD. Eylül 2018;30(3):276-285. doi:10.7240/marufbd.412069
Chicago Atalan, Yunus. “Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri”. Marmara Fen Bilimleri Dergisi 30, sy. 3 (Eylül 2018): 276-85. https://doi.org/10.7240/marufbd.412069.
EndNote Atalan Y (01 Eylül 2018) Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri. Marmara Fen Bilimleri Dergisi 30 3 276–285.
IEEE Y. Atalan, “Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri”, MFBD, c. 30, sy. 3, ss. 276–285, 2018, doi: 10.7240/marufbd.412069.
ISNAD Atalan, Yunus. “Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri”. Marmara Fen Bilimleri Dergisi 30/3 (Eylül 2018), 276-285. https://doi.org/10.7240/marufbd.412069.
JAMA Atalan Y. Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri. MFBD. 2018;30:276–285.
MLA Atalan, Yunus. “Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri”. Marmara Fen Bilimleri Dergisi, c. 30, sy. 3, 2018, ss. 276-85, doi:10.7240/marufbd.412069.
Vancouver Atalan Y. Yeni Bir İterasyon Yöntemi İçin Hemen-Hemen Büzülme Dönüşümleri Altında Bazı Sabit Nokta Teoremleri. MFBD. 2018;30(3):276-85.

Cited By

Rate of Convergence for A New Iteration Method
Journal of the Institute of Science and Technology
Samet MALDAR
https://doi.org/10.21597/jist.663039

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr