Araştırma Makalesi
BibTex RIS Kaynak Göster

Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine

Yıl 2018, Cilt: 30 Sayı: 3, 211 - 217, 30.09.2018
https://doi.org/10.7240/marufbd.425858

Öz

.Bu çalışmada, kesirli nötral diferensiyel denklemlerin bir sınıfı
dikkate alınmıştır. Yeni karşılaştırma teoremlerine dayanarak, salınımlılık
sonuçları elde edilmiştir. Elde edilen sonuçlar literatürdeki çalışmaları
tamamlamış ve genelleştirmiştir

Kaynakça

  • Kiryakova, V., Generalized fractional calculus and applications, Longman Group UK Limited, Essex (1994).
  • Magin, R. L. (2006). Fractional calculus in bioengineering (pp. 269-355). Redding: Begell House.
  • Bai, Z., & Xu, R. (2018). The Asymptotic Behavior of Solutions for a Class of Nonlinear Fractional Difference Equations with Damping Term. Discrete Dynamics in Nature and Society, 2018.
  • Bayram, M., Adiguzel, H., & Ogrekci, S. (2015). Oscillation of fractional order functional differential equations with nonlinear damping. Open Physics, 13(1).
  • Agarwal, R. P., Lakshmikantham, V., & Nieto, J. J. (2010). On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications, 72(6), 2859-2862.
  • Secer, A., & Adiguzel, H. (2016). Oscillation of solutions for a class of nonlinear fractional difference equations. The Journal of Nonlinear Science and Applications (JNSA), 9(11), 5862-5869.
  • Chen, D. X. (2012). Oscillation criteria of fractional differential equations. Advances in Difference Equations, 2012(1), 33.
  • Matignon, D. (1996, July). Stability results for fractional differential equations with applications to control processing. In Computational engineering in systems applications (Vol. 2, pp. 963-968). Lille, France: IMACS, IEEE-SMC.
  • Öğrekçi, S. (2015). Generalized Taylor series method for solving nonlinear fractional differential equations with modified Riemann-Liouville derivative. Advances in Mathematical Physics, 2015.
  • Öğrekçi, S. (2015). Interval oscillation criteria for functional differential equations of fractional order. Advances in Difference Equations, 2015(1), 3.
  • Muthulakshmi, V., & Pavithra, S. (2017). Interval Oscillation Criteria for Forced Fractional Differential Equations with Mixed Nonlinearities. Global Journal of Pure and Applied Mathematics, 13(9), 6343-6353.
  • Wang, Y. Z., Han, Z. L., Zhao, P., & Sun, S. R. (2015). Oscillation theorems for fractional neutral differential equations. Hacettepe journal of mathematics and statistics, 44(6), 1477-1488.
  • Ganesan, V., & Kumar, M. S. (2016). Oscillation theorems for fractional order neutral differential equations. Journal of Applied Computer Science & Mathematics (revised).
  • Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications, 51(9-10), 1367-1376.
  • Li, T., & Rogovchenko, Y. V. (2015). Oscillation of second‐order neutral differential equations. Mathematische Nachrichten, 288(10), 1150-1162.
  • Philos, C. G. (1981). On the existence of nonoscillatory solutions tending to zero at∞ for differential equations with positive delays. Archiv der Mathematik, 36(1), 168-178.
  • Kitamura, Y., & Kusano, T. (1980). Oscillation of first-order nonlinear differential equations with deviating arguments. Proceedings of the American Mathematical Society, 64-68.
Yıl 2018, Cilt: 30 Sayı: 3, 211 - 217, 30.09.2018
https://doi.org/10.7240/marufbd.425858

Öz

Kaynakça

  • Kiryakova, V., Generalized fractional calculus and applications, Longman Group UK Limited, Essex (1994).
  • Magin, R. L. (2006). Fractional calculus in bioengineering (pp. 269-355). Redding: Begell House.
  • Bai, Z., & Xu, R. (2018). The Asymptotic Behavior of Solutions for a Class of Nonlinear Fractional Difference Equations with Damping Term. Discrete Dynamics in Nature and Society, 2018.
  • Bayram, M., Adiguzel, H., & Ogrekci, S. (2015). Oscillation of fractional order functional differential equations with nonlinear damping. Open Physics, 13(1).
  • Agarwal, R. P., Lakshmikantham, V., & Nieto, J. J. (2010). On the concept of solution for fractional differential equations with uncertainty. Nonlinear Analysis: Theory, Methods & Applications, 72(6), 2859-2862.
  • Secer, A., & Adiguzel, H. (2016). Oscillation of solutions for a class of nonlinear fractional difference equations. The Journal of Nonlinear Science and Applications (JNSA), 9(11), 5862-5869.
  • Chen, D. X. (2012). Oscillation criteria of fractional differential equations. Advances in Difference Equations, 2012(1), 33.
  • Matignon, D. (1996, July). Stability results for fractional differential equations with applications to control processing. In Computational engineering in systems applications (Vol. 2, pp. 963-968). Lille, France: IMACS, IEEE-SMC.
  • Öğrekçi, S. (2015). Generalized Taylor series method for solving nonlinear fractional differential equations with modified Riemann-Liouville derivative. Advances in Mathematical Physics, 2015.
  • Öğrekçi, S. (2015). Interval oscillation criteria for functional differential equations of fractional order. Advances in Difference Equations, 2015(1), 3.
  • Muthulakshmi, V., & Pavithra, S. (2017). Interval Oscillation Criteria for Forced Fractional Differential Equations with Mixed Nonlinearities. Global Journal of Pure and Applied Mathematics, 13(9), 6343-6353.
  • Wang, Y. Z., Han, Z. L., Zhao, P., & Sun, S. R. (2015). Oscillation theorems for fractional neutral differential equations. Hacettepe journal of mathematics and statistics, 44(6), 1477-1488.
  • Ganesan, V., & Kumar, M. S. (2016). Oscillation theorems for fractional order neutral differential equations. Journal of Applied Computer Science & Mathematics (revised).
  • Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications, 51(9-10), 1367-1376.
  • Li, T., & Rogovchenko, Y. V. (2015). Oscillation of second‐order neutral differential equations. Mathematische Nachrichten, 288(10), 1150-1162.
  • Philos, C. G. (1981). On the existence of nonoscillatory solutions tending to zero at∞ for differential equations with positive delays. Archiv der Mathematik, 36(1), 168-178.
  • Kitamura, Y., & Kusano, T. (1980). Oscillation of first-order nonlinear differential equations with deviating arguments. Proceedings of the American Mathematical Society, 64-68.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Adıgüzel 0000-0002-8948-806X

Yayımlanma Tarihi 30 Eylül 2018
Kabul Tarihi 26 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 30 Sayı: 3

Kaynak Göster

APA Adıgüzel, H. (2018). Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine. Marmara Fen Bilimleri Dergisi, 30(3), 211-217. https://doi.org/10.7240/marufbd.425858
AMA Adıgüzel H. Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine. MFBD. Eylül 2018;30(3):211-217. doi:10.7240/marufbd.425858
Chicago Adıgüzel, Hakan. “Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine”. Marmara Fen Bilimleri Dergisi 30, sy. 3 (Eylül 2018): 211-17. https://doi.org/10.7240/marufbd.425858.
EndNote Adıgüzel H (01 Eylül 2018) Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine. Marmara Fen Bilimleri Dergisi 30 3 211–217.
IEEE H. Adıgüzel, “Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine”, MFBD, c. 30, sy. 3, ss. 211–217, 2018, doi: 10.7240/marufbd.425858.
ISNAD Adıgüzel, Hakan. “Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine”. Marmara Fen Bilimleri Dergisi 30/3 (Eylül 2018), 211-217. https://doi.org/10.7240/marufbd.425858.
JAMA Adıgüzel H. Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine. MFBD. 2018;30:211–217.
MLA Adıgüzel, Hakan. “Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine”. Marmara Fen Bilimleri Dergisi, c. 30, sy. 3, 2018, ss. 211-7, doi:10.7240/marufbd.425858.
Vancouver Adıgüzel H. Kesirli Nötral Diferensiyel Denklemlerin Çözümlerinin Kalitatif Davranışları Üzerine. MFBD. 2018;30(3):211-7.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr