Büyük mantıkçı ve matematikçi Kurt Gödel, son dönem çalışmalarında küme teorisinin sonuçları, dilin grameri ve felsefesi, nesnellik ve görelilik, Tanrı’nın varlığının ontolojik kanıtı ve kesin bir yöntem olarak fenomenoloji gibi felsefi sorunlara odaklanır. Bu makale Gödel’in kendi zamanının (mantık ve matematik) felsefesini nasıl okuduğunu ve matematiğin temellerini açıklamak için neden Husserl’in fenomenolojisine yöneldiğini incelemektedir. Öncelikle Gödel, Husserl’in Weltanschauung (dünya görüşü) felsefesi ile kesin bilim olarak felsefe arasında yaptığı önemli ayrımı kullanır: Weltanschauung felsefesine göre zamanın ruhu sürekli değişir, dolayısıyla tartışılan fikirler ve ulaşılmaya çalışılan hedefler zamansaldır ve ebedi hakikatler uğruna değil, kendi mükemmellikleri içindir; öte yandan, kesin bilim olarak felsefe ise zamanüstüdür, dolayısıyla amacı da mutlak ve zamansız değerleri keşfetmektir. Gödel, kendi zamanının dünya görüşünü değerlendirdiğinde, felsefe ve matematiğin gelişiminin şüphecilik, kötümserlik ve pozitivizme doğru eğildiğini görür. Örneğin küme teorisinin antinomileri, matematik ve mantığın üzerine kurulduğu zemini sarsmıştır. Gödel de tamamlanmamışlık teoremlerinde bu paradoksları, bir sistem içinde ne kanıtlanabilen ne de çürütülebilen bazı ifadeler olduğunu ortaya koymak için kullanır. Bu aynı zamanda aritmetiğin kendi tutarlılığını kanıtlamaya uygun olmadığı anlamına gelir. Ancak Gödel buradan matematik ve mantıkta nihilizme düşmek sonucuna varmaz: Küme teorisinin bu açık antinomileri bizi “zorunlu olarak” ne mantıksal pozitivizme, ne böyle bir materyalizme ne de herhangi bir karamsar bilgi teorisine götürür. Tamamlanmamışlık teoremleri, kendi hesap sistemi içinde doğru olan ancak ne kanıtlanabilir ne de kanıtlanamaz olan aritmetiksel önermeler olduğunu, dolayısıyla aritmetiğin özünde tamamlanmamış olduğunu ileri sürer. Bununla birlikte, Alfred Tarski’nin bir sistem içindeki hataları tespit edip sistemi hep birlikte yeniden biçimlendirmeye yönelik patolojik görüşü yerine Gödel, matematiksel dünyanın telafi edilemez gerçekliğine işaret eden antinomileri betimleyen yeni kalıplar bulmak için yöntemlerimizi değiştirmemiz gerektiğini savunur. Dolayısıyla Gödel, döneminin Weltanschauung felsefesinin herhangi bir varyasyonunu takip etmez; ne antinomilerden kurtulmak için matematiksel gerçeklikleri matematiksel kanıtlara indirgemeye çalışır ne de kapalı bir biçimsel sistemle eksiksiz bir doğrular sistemini kurtarmaya çabalar, her iki Weltanschauung felsefesi de gerçekçi bir yöntem ortaya koyamaz. Bu bağlamda Gödel, fenomenolojinin görevini, matematiğin temelleri için sistematik bir çerçeve arayışına benzer bulur. Gödel’e göre Husserl’in fenomenolojisi (matematiksel) özlere yönelik sezgiyi çoğaltır ve küme teorisinin antinomileri gibi tanımlanamayan kavramların anlamının açıklığa kavuşturulmasını sağlar. Fenomenolojik indirgemeyi matematiksel dünyanın nesnel gerçekliğine uygulayan Gödel, (matematiksel ve mantıksal) kavramların temel özelliklerinin açık bir deneyimsel gerçekliğini elde ettiğine inanır. Kısaca ifade etmek gerekirse, Gödel’in Husserl’in fenomenolojisinde bulduğu ve kendi matematiksel gerçekçilik yöntemine karşılık gelen şey, matematiksel özleri bize geri veren, derli toplu bir yöntemdir.
In his later works, the great logician and mathematician Kurt Gödel concentrates his focus on the philosophical problems such as the implications of set theory, the grammar and philosophy of language, objectivity and relativity, the ontological proof of God’s existence, and phenomenology as an exact method. This essay explores how Gödel reads the philosophy (of logic and mathematics) of his time and why he turns his attention to Husserl’s phenomenology for describing the foundations of mathematics. To begin with, Gödel employs Husserl’s significant distinction between Weltanschauung (worldview) philosophy and philosophy as rigorous science: According to the Weltanschauung philosophy, the spirit of time constantly changes so that the ideas discussed and goals attempted are meant to be temporal, and not for the sake of eternal truths, but for that of their own perfection; philosophy as rigorous science, on the other hand, is supratemporal so that its aim is to discover absolute and timeless values. As for the worldview of his time, Gödel sees the development of philosophy and mathematics leaned toward skepticism, pessimism, and positivism. The antinomies of set theory, for instance shaked the grounds on which mathematics and logic are founded. Gödel, too, uses these paradoxes in his incompleteness theorems in order to prove that there are some statements which can neither be proved nor disproved within a system. That also means that arithmetic is not eligible to prove its own consistency. From this, however, Gödel does not come to a conclusion for a nihilism in mathematics and logic: These mere antinomies of set theory do not “necessarily” lead us to logical positivism, and neither to such a materialism, nor to any kind of pessimistic theory of knowledge. The incompleteness theorems assert that there are arithmetical propositions that are true but neither provable nor unprovable within its own calculus, so that arithmetic is intrinsically incomplete. However, instead of Alfred Tarski’s pathological view of examining the detections within the faulty system and then reforming the system all together, Gödel holds that we need to change our methods to find new patterns that describe the antinomies pointing to the unrecoverable reality of the mathematical world. Thus, Gödel does not follow any variation of the Weltanschauung philosophy of his time, either attempting to reduce mathematical realities to mathematical proofs in order to get rid of antinomies, or endeavoring to rescue a complete system of truths by a closed formal system, both Weltanschauung philosophies fail to set forth a realistic method. In this context, Gödel finds the task of phenomenology analogous to what he pursues in terms of a systematic framework for the foundations of mathematics. Husserl’s phenomenology, in Gödel’s account, proliferates the intuition of (mathematical) essences and provides a clarification of meaning of undefinable concepts, such as the antinomies of set theory. Applying the phenomenological reduction to the objective reality of the mathematical world, Gödel believes one obtains a clear experiential reality of the essential characteristics of (mathematical and logical) concepts. Briefly put, what Gödel finds in Husserl’s phenomenology that corresponds to his way of mathematical realism is a thoroughly designated method giving us mathematical essences back again.
Birincil Dil | İngilizce |
---|---|
Konular | Sistematik Felsefe (Diğer) |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Yayımlanma Tarihi | 30 Aralık 2023 |
Gönderilme Tarihi | 31 Ekim 2023 |
Kabul Tarihi | 9 Aralık 2023 |
Yayımlandığı Sayı | Yıl 2023 |
Marmara Üniversitesi İlahiyat Fakültesi Dergisi
Marmara Üniversitesi İlahiyat Fakültesi Dergisi açık erişimli bir dergidir
Açık Erişim Politikası için tıklayınız.