Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM

Yıl 2022, , 55 - 61, 30.12.2022
https://doi.org/10.52795/mateca.1182276

Öz

In this study, the effects of dry, cryogenic cooling (LN2/CO2) environments and different cutting parameters on power consumption in turning AISI 52100 bearing steel with finite element analysis (FEA) were investigated. ThirdWave AdvantEdge software was used for FEA. In the analyzes, dry and cryogenic cooling (LN2/CO2) as the processing medium, three different cutting speeds (100 m/min, 150 m/min and 200 m/min), three different feed rates (0.1 mm/rev, 0.15 mm/rev and 0.2 mm/rev) and a fixed depth of cut (0.5 mm) were selected as machining parameters. According to the FE analysis results, it was observed that the power consumption in turning of AISI 52100 bearing steel in cryogenic cooling (LN2/CO2) environment decreased compared to dry environment in all cutting parameters. In the turning experiments performed in dry and cryogenic cooling (LN2/CO2) environments, it was observed that the minimum power consumption was measured at low cutting speeds and high feed rates. In this context, the lowest power consumption was measured as 72 W at 100 m/min cutting speed, 0.2 mm/rev feed rate in LN2 environment, while the highest power consumption was 217.3 W at 200 m/min cutting speed, 0.1 mm/rev feed rate in dry environment.

Kaynakça

  • Duflou, J.R., et al., Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP annals, 2012. 61(2): p. 587-609.
  • Levent, U., TI–6AL–4V Sıcak İşlenmesi Üzerine Etkilerinin Sonlu Elemanlar Yöntemi İle İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 2022. 10(2): p. 532-537.
  • Parida, A.K. and K. Maity, Hot machining of Ti–6Al–4V: FE analysis and experimental validation. Sādhanā, 2019. 44(6): p. 1-6. Akgün, M., Monel K-500 Alaşımının Isı Destekli İşlenmesi Üzerine Sayısal Bir Çalışma. Uluslararası Teknolojik Bilimler Dergisi, 2022. 14(1): p. 23-29.
  • Wang, Z., K.P. Rajurkar, and M. Murugappan, Cryogenic PCBN turning of ceramic (Si 3N 4). Wear, 1996. 195(1-2): p. 1-6.
  • Evans, C. and J. Bryan, Cryogenic diamond turning of stainless steel. CIRP annals, 1991. 40(1): p. 571-575.
  • Gupta, M.K., et al., In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study. Mechanical Systems and Signal Processing, 2022. 169: p. 108772.
  • König, W., et al., Machining of new materials. CIRP annals, 1990. 39(2): p. 673-681.
  • Yıldırım, Ç.V., Experimental comparison of the performance of nanofluids, cryogenic and hybrid cooling in turning of Inconel 625. Tribology International, 2019. 137: p. 366-378.
  • Sartori, S., et al., On the tool wear mechanisms in dry and cryogenic turning Additive Manufactured titanium alloys. Tribology International, 2017. 105: p. 264-273.
  • Dhananchezian, M., Effectiveness of cryogenic cooling in turning of Inconel 625 alloy, in Advances in manufacturing processes. 2019, Springer. p. 591-597.
  • Kesavan, J., V. Senthilkumar, and S. Dinesh, Experimental and numerical investigations on machining of Hastelloy C276 under cryogenic condition. Materials Today: Proceedings, 2020. 27: p. 2441-2444.
  • Akgün, M., Kesici Takımlara Uygulanan Kriyojenik İşlemin Inconel 625 Nikel Esaslı Süper Alaşımın İşlenebilirliğine Etkisinin Deneysel Nümerik ve İstatistiksel Araştırılması. 2021.
  • Wang, Z., et al., Cryogenic machining of tantalum. Journal of manufacturing processes, 2002. 4(2): p. 122-127.
  • Özbek, N.A., et al., Application of deep cryogenic treatment to uncoated tungsten carbide inserts in the turning of AISI 304 stainless steel. Metallurgical and Materials Transactions A, 2016. 47(12): p. 6270-6280.
  • Gürhan, H., et al., Kriyojenik işlemin SAE 4140 çeliğin mekanik özellikleri üzerine etkisi. Selçuk-Teknik Dergisi, 2014. 13(2): p. 25-37.
  • Hribersek, M., et al., Modeling of machined surface characteristics in cryogenic orthogonal turning of inconel 718. Machining Science and Technology, 2018. 22(5): p. 829-850.
  • Umbrello, D., Analysis of the white layers formed during machining of hardened AISI 52100 steel under dry and cryogenic cooling conditions. The International Journal of Advanced Manufacturing Technology, 2013. 64(5): p. 633-642.
  • Rotella, G., et al., Evaluation of process performance for sustainable hard machining. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2012. 6(6): p. 989-998.
  • Biček, M., et al., Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel. Journal of Materials Processing Technology, 2012. 212(12): p. 2609-2618.
  • Urrea-Quintero, J.-H., et al., Multiscale modeling of a free-radical emulsion polymerization process: Numerical approximation by the Finite Element Method. Computers & Chemical Engineering, 2020. 140: p. 106974.
  • Rao, B., C.R. Dandekar, and Y.C. Shin, An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 2011. 211(2): p. 294-304.
  • Shrot, A. and M. Bäker, Determination of Johnson–Cook parameters from machining simulations. Computational Materials Science, 2012. 52(1): p. 298-304.
  • Xu, X., et al., Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. Journal of Materials Processing Technology, 2020. 286: p. 116834.
  • Pawar, S., et al., Residual stresses during hard turning of AISI 52100 steel: Numerical modelling with experimental validation. Materials Today: Proceedings, 2017. 4(2): p. 2350-2359.
  • Akgün, M. and H. Demir, Optimization of cutting parameters affecting surface roughness in turning of inconel 625 superalloy by cryogenically treated tungsten carbide inserts. SN Applied Sciences, 2021. 3(2): p. 1-12.
  • Gupta, M.K., et al., Tribological performance based machinability investigations in cryogenic cooling assisted turning of α-β titanium alloy. Tribology International, 2021. 160: p. 107032.
  • Bhushan, R.K., Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production, 2013. 39: p. 242-254.
  • Camposeco-Negrete, C., Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production, 2013. 53: p. 195-203.

AISI 52100 Rulman Çeliğinin Kriyojenik Destekli Tornalama İşleminde Kesme Parametrelerinin Güç Tüketimi Üzerine Etkilerinin FEM ile İncelenmesi

Yıl 2022, , 55 - 61, 30.12.2022
https://doi.org/10.52795/mateca.1182276

Öz

Bu çalışma, sonlu eleman analizi (FEA) ile AISI 52100 rulman çeliğinin tornalanmasında güç tüketimi üzerine kuru, kriyojenik soğutma (LN2/CO2) ortamlarının ve farklı kesme parametrelerinin etkileri incelenmiştir. FEA ThirdWave AdvantEdge yazılımı kullanılmıştır. Analizlerde işleme ortamı olarak kuru ve kriyojenik soğutma (LN2/CO2) ile işleme parametresi olarak üç farklı kesme hızı (100 m/min, 150 m/min ve 200 m/min), üç farklı ilerleme miktarı (0.1 mm/rev, 0.15 mm/rev ve 0.2 mm/rev) ve sabit kesme derinliği (0.5 mm) seçilmiştir. FE analiz sonuçlarına göre, tüm kesme parametrelerinde kriyojenik soğutma (LN2/CO2) ortamında AISI 52100 rulman çeliğinin tornalanmasında güç tüketimi kuru ortama göre azaldığı görülmüştür. Kuru ve kriyojenik soğutma (LN2/CO2) ortamlarında yapılan tornalama deneylerinde düşük kesme hızlarında ve yüksek ilerleme miktarlarında minimum güç tüketiminin ölçüldüğü görülmüştür. Bu bağlamda en düşük güç tüketimi 100 m/min kesme hızında, 0.2 mm/rev ilerleme miktarında ve LN2 ortamında 72 W ölçülürken, en yüksek güç tüketimi 200 m/min kesme hızında, 0.1 mm/rev ilerleme miktarında ve kuru ortamda 217.3 W olmuştur.

Kaynakça

  • Duflou, J.R., et al., Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP annals, 2012. 61(2): p. 587-609.
  • Levent, U., TI–6AL–4V Sıcak İşlenmesi Üzerine Etkilerinin Sonlu Elemanlar Yöntemi İle İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 2022. 10(2): p. 532-537.
  • Parida, A.K. and K. Maity, Hot machining of Ti–6Al–4V: FE analysis and experimental validation. Sādhanā, 2019. 44(6): p. 1-6. Akgün, M., Monel K-500 Alaşımının Isı Destekli İşlenmesi Üzerine Sayısal Bir Çalışma. Uluslararası Teknolojik Bilimler Dergisi, 2022. 14(1): p. 23-29.
  • Wang, Z., K.P. Rajurkar, and M. Murugappan, Cryogenic PCBN turning of ceramic (Si 3N 4). Wear, 1996. 195(1-2): p. 1-6.
  • Evans, C. and J. Bryan, Cryogenic diamond turning of stainless steel. CIRP annals, 1991. 40(1): p. 571-575.
  • Gupta, M.K., et al., In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study. Mechanical Systems and Signal Processing, 2022. 169: p. 108772.
  • König, W., et al., Machining of new materials. CIRP annals, 1990. 39(2): p. 673-681.
  • Yıldırım, Ç.V., Experimental comparison of the performance of nanofluids, cryogenic and hybrid cooling in turning of Inconel 625. Tribology International, 2019. 137: p. 366-378.
  • Sartori, S., et al., On the tool wear mechanisms in dry and cryogenic turning Additive Manufactured titanium alloys. Tribology International, 2017. 105: p. 264-273.
  • Dhananchezian, M., Effectiveness of cryogenic cooling in turning of Inconel 625 alloy, in Advances in manufacturing processes. 2019, Springer. p. 591-597.
  • Kesavan, J., V. Senthilkumar, and S. Dinesh, Experimental and numerical investigations on machining of Hastelloy C276 under cryogenic condition. Materials Today: Proceedings, 2020. 27: p. 2441-2444.
  • Akgün, M., Kesici Takımlara Uygulanan Kriyojenik İşlemin Inconel 625 Nikel Esaslı Süper Alaşımın İşlenebilirliğine Etkisinin Deneysel Nümerik ve İstatistiksel Araştırılması. 2021.
  • Wang, Z., et al., Cryogenic machining of tantalum. Journal of manufacturing processes, 2002. 4(2): p. 122-127.
  • Özbek, N.A., et al., Application of deep cryogenic treatment to uncoated tungsten carbide inserts in the turning of AISI 304 stainless steel. Metallurgical and Materials Transactions A, 2016. 47(12): p. 6270-6280.
  • Gürhan, H., et al., Kriyojenik işlemin SAE 4140 çeliğin mekanik özellikleri üzerine etkisi. Selçuk-Teknik Dergisi, 2014. 13(2): p. 25-37.
  • Hribersek, M., et al., Modeling of machined surface characteristics in cryogenic orthogonal turning of inconel 718. Machining Science and Technology, 2018. 22(5): p. 829-850.
  • Umbrello, D., Analysis of the white layers formed during machining of hardened AISI 52100 steel under dry and cryogenic cooling conditions. The International Journal of Advanced Manufacturing Technology, 2013. 64(5): p. 633-642.
  • Rotella, G., et al., Evaluation of process performance for sustainable hard machining. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2012. 6(6): p. 989-998.
  • Biček, M., et al., Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel. Journal of Materials Processing Technology, 2012. 212(12): p. 2609-2618.
  • Urrea-Quintero, J.-H., et al., Multiscale modeling of a free-radical emulsion polymerization process: Numerical approximation by the Finite Element Method. Computers & Chemical Engineering, 2020. 140: p. 106974.
  • Rao, B., C.R. Dandekar, and Y.C. Shin, An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 2011. 211(2): p. 294-304.
  • Shrot, A. and M. Bäker, Determination of Johnson–Cook parameters from machining simulations. Computational Materials Science, 2012. 52(1): p. 298-304.
  • Xu, X., et al., Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. Journal of Materials Processing Technology, 2020. 286: p. 116834.
  • Pawar, S., et al., Residual stresses during hard turning of AISI 52100 steel: Numerical modelling with experimental validation. Materials Today: Proceedings, 2017. 4(2): p. 2350-2359.
  • Akgün, M. and H. Demir, Optimization of cutting parameters affecting surface roughness in turning of inconel 625 superalloy by cryogenically treated tungsten carbide inserts. SN Applied Sciences, 2021. 3(2): p. 1-12.
  • Gupta, M.K., et al., Tribological performance based machinability investigations in cryogenic cooling assisted turning of α-β titanium alloy. Tribology International, 2021. 160: p. 107032.
  • Bhushan, R.K., Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of cleaner production, 2013. 39: p. 242-254.
  • Camposeco-Negrete, C., Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production, 2013. 53: p. 195-203.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Levent Uğur 0000-0003-3447-3191

Hakan Kazan 0000-0001-7745-8974

Barış Özlü 0000-0002-8594-1234

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 9 Ekim 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Uğur, L., Kazan, H., & Özlü, B. (2022). Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM. Manufacturing Technologies and Applications, 3(3), 55-61. https://doi.org/10.52795/mateca.1182276
AMA Uğur L, Kazan H, Özlü B. Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM. MATECA. Aralık 2022;3(3):55-61. doi:10.52795/mateca.1182276
Chicago Uğur, Levent, Hakan Kazan, ve Barış Özlü. “Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM”. Manufacturing Technologies and Applications 3, sy. 3 (Aralık 2022): 55-61. https://doi.org/10.52795/mateca.1182276.
EndNote Uğur L, Kazan H, Özlü B (01 Aralık 2022) Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM. Manufacturing Technologies and Applications 3 3 55–61.
IEEE L. Uğur, H. Kazan, ve B. Özlü, “Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM”, MATECA, c. 3, sy. 3, ss. 55–61, 2022, doi: 10.52795/mateca.1182276.
ISNAD Uğur, Levent vd. “Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM”. Manufacturing Technologies and Applications 3/3 (Aralık 2022), 55-61. https://doi.org/10.52795/mateca.1182276.
JAMA Uğur L, Kazan H, Özlü B. Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM. MATECA. 2022;3:55–61.
MLA Uğur, Levent vd. “Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM”. Manufacturing Technologies and Applications, c. 3, sy. 3, 2022, ss. 55-61, doi:10.52795/mateca.1182276.
Vancouver Uğur L, Kazan H, Özlü B. Investigation of the Impacts of Cutting Parameters on Power Usage in Cryogenic-Assisted Turning of AISI 52100 Bearing Steel by FEM. MATECA. 2022;3(3):55-61.