Araştırma Makalesi
BibTex RIS Kaynak Göster

Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi ile Çoklu Yanıt Optimizasyonu

Yıl 2024, , 89 - 103, 30.08.2024
https://doi.org/10.52795/mateca.1499800

Öz

Bu çalışmada, eriyik yığma modelleme ile üretilen polilaktik asit numunelerinin çekme mukavemeti, akma mukavemeti ve ağırlık gibi özellikleri incelenmiştir. Numunelerin 3D baskısı için dolgu yoğunluğu, katman kalınlığı ve baskı hızı olmak üzere üç temel parametre dikkate alınmıştır. Deneylerin tasarımında Taguchi’nin L9 ortogonal dizisi kullanılmış ve varyans analizi yöntemiyle her bir süreç parametresinin her bir yanıta olan göreceli etkisi ve katkısı belirlenmiştir. Taguchi yöntemi kullanılarak yapılan testlerde, çekme mukavemeti için optimum parametrelerin baskı hızı 60 mm/s, katman kalınlığı 0.3 mm ve %80 dolgu yoğunluğu olduğu; akma mukavemeti için ise 50 mm/s, katman kalınlığı 0.3 mm ve %80 dolgu yoğunluğu olduğu; ağırlık için ise 50 mm/s, katman kalınlığı 0.2 mm ve %40 dolgu yoğunluğu olduğu belirlenmiştir. Gri İlişki Analizi, en yüksek gri ilişki derecesinin baskı hızı 50 mm/s, katman kalınlığı 0.3 mm ve %80 dolgu yoğunluğunda elde edildiğini göstermiştir. Varyans analizi sonuçlarına göre, %76 katkı oranı ile Gri İlişki Derecesi için en önemli değişkenin dolgu yoğunluğu olduğu tespit edilmiştir. Önerilen Taguchi tabanlı gri ilişkisel analiz yöntemi, tüm yanıtlar için optimum parametreleri belirlemiştir. Bu çalışma, nihai ürün üretim süreci için en iyi 3D baskı işlem parametre ayarlarını belirleyerek Türkçe literatürdeki önemli bir boşluğu doldurmaktadır.

Etik Beyan

Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler

Kaynakça

  • K. Özsoy, B. Duman, Eklemeli imalat (3 boyutlu baskı) teknolojilerinin eğitimde kullanılabilirliği, International Journal of 3D Printing Technologies and Digital Industry, 1(1): 36-48, 2017.
  • Ş. Erener, S. Boz, Modern üretim tekniklerinde eklemeli imalat sistemlerinin yeri ve kullanım alanları, Turkish Journal of Fashion Design and Management, 3(1): 47-56, 2021.
  • T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143: 172-196, 2018.
  • J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Composites Part B: Engineering, 117: 138-149, 2017.
  • O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in manufacturing, 3: 42-53, 2015.
  • B.D. de Castro, F.D.C. Magalhães, T.H. Panzera, J.C. Campos Rubio, An assessment of fully integrated polymer sandwich structures designed by additive manufacturing, Journal of Materials Engineering and Performance, 30: 5031-5038, 2021.
  • H.Y. Sarvestani, A.H. Akbarzadeh, A. Mirbolghasemi, K. Hermenean, 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability, Materials & Design, 160: 179-193, 2018.
  • I. Ullah, M. Brandt, S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures, Materials & Design, 92: 937-948, 2016.
  • H. Mozafari, S. Khatami, H. Molatefi, Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress–Numerical study, Materials & Design, 66: 400-411, 2015.
  • Y. Feng, H. Qiu, Y. Gao, H. Zheng, J. Tan, Creative design for sandwich structures: A review, International Journal of Advanced Robotic Systems, 17(3): 1729881420921327, 2020.
  • N. Kladovasilakis, P. Charalampous, K. Tsongas, I. Kostavelis, D. Tzetzis, D. Tzovaras, Experimental and computational investigation of lattice sandwich structures constructed by additive manufacturing Technologies, Journal of Manufacturing and Materials Processing, 5(3): 95, 2021.
  • V. Acanfora, R. Castaldo, A. Riccio, On the effects of core microstructure on energy absorbing capabilities of sandwich panels intended for additive manufacturing, Materials, 15(4): 1291, 2022.
  • A. Rahimijonoush, M. Bayat, Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios, Thin-Walled Structures, 157: 107079, 2020.
  • H.P. Konka, M.A. Wahab, K. Lian, On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors, ASME. J. Eng. Mater. Technol, 134(1): 011010, 2012.
  • S.K. Dhinesh, P.S. Arun, K.K. Senthil, A. Megalingam, Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials, Materials Today: Proceedings, 45: 1175-1180, 2021.
  • P.K. Patro, S. Kandregula, M.S. Khan, S. Das, Investigation of mechanical properties of 3D printed sandwich structures using PLA and ABS, Materials Today: Proceedings, 2023.
  • P.K. Mishra, P. Senthil, Prediction of in-plane stiffness of multi-material 3D printed laminate parts fabricated by FDM process using CLT and its mechanical behaviour under tensile load, Materials Today Communications, 23: 100955, 2020.
  • P.V. Yap, M.Y. Chan, S.C. Koay, Preliminary Study on Mechanical Properties of 3D Printed Multi-materials ABS/PC Parts: Effect of Printing Parameters, Journal of Physical Science, 32(2): 87-104, 2021.
  • F. Wang, Y. Ji, C. Chen, G. Zhang, Z. Chen, Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane, Journal of Polymer Research, 29(8): 320, 2022.
  • B. Arifvianto, B.E. Satiti, U.A. Salim, Suyitno, A. Nuryanti, M. Mahardika, Mechanical properties of the FFF sandwich-structured parts made of PLA/TPU multi-material, Progress in Additive Manufacturing, 7(6): 1213-1223, 2022.
  • S. Kumar, R. Singh, M. Singh, Multi-material 3D printed PLA/PA6-TiO2 composite matrix: Rheological, thermal, tensile, morphological and 4D capabilities, Advances in Materials and Processing Technologies, 8(2): 2329-2348, 2022.
  • D.M. Baca Lopez, R. Ahmad, Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling, Polymers, 12(3): 651, 2020.
  • Q. Liu, Z. Zhang, D. Yavas, W. Shen, D. Wu, Multi-material additive manufacturing: effect of process parameters on flexural behavior of soft-hard sandwich beams, Rapid Prototyping Journal, 29(5): 885-896, 2023.
  • A.C. Pinho, A.P. Piedade, Sandwich multi-material 3D-printed polymers: influence of aging on the impact and flexure resistances, Polymers, 13(22): 4030, 2021.
  • S. Kumar, I. Singh, S.S.R. Koloor, D. Kumar, M.Y. Yahya, On laminated object manufactured FDM-printed ABS/TPU multimaterial specimens: An insight into mechanical and morphological characteristics, Polymers, 14(19): 4066, 2022.

The Optimization of Multiple Responses of Process Parameters in Fused Deposition Modeling through Taguchi-Based Grey Relational Analysis Method

Yıl 2024, , 89 - 103, 30.08.2024
https://doi.org/10.52795/mateca.1499800

Öz

In this study, the tensile strength, yield strength, and weight properties of polylactic acid samples produced by melt extrusion modeling were investigated. Three key parameters for 3D printing, namely infill density, layer thickness, and printing speed, were considered. Taguchi's L9 orthogonal array was used in the experiment design, and the relative effects and contributions of each process parameter to each response were determined using variance analysis. In the tests conducted using the Taguchi method, the optimal parameters for tensile strength were determined to be a printing speed of 60 mm/s, a layer thickness of 0.3 mm, and an 80% infill density; for yield strength, a printing speed of 50 mm/s, a layer thickness of 0.3 mm, and an 80% infill density were found to be optimal; and for weight, a printing speed of 50 mm/s, a layer thickness of 0.2 mm, and a 40% infill density were identified as optimal. Grey Relational Analysis indicated that the highest grey relational degree was achieved at a printing speed of 50 mm/s, a layer thickness of 0.3 mm, and an 80% infill density. According to the results of variance analysis, infill density was identified as the most important variable for Grey Relational Degree, with a contribution rate of 76%. The proposed Taguchi-based grey relational analysis method determined the optimum parameters for all responses. This study fills an important gap in the Turkish literature by identifying the best 3D printing process parameter settings for the final product manufacturing process.

Etik Beyan

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Kaynakça

  • K. Özsoy, B. Duman, Eklemeli imalat (3 boyutlu baskı) teknolojilerinin eğitimde kullanılabilirliği, International Journal of 3D Printing Technologies and Digital Industry, 1(1): 36-48, 2017.
  • Ş. Erener, S. Boz, Modern üretim tekniklerinde eklemeli imalat sistemlerinin yeri ve kullanım alanları, Turkish Journal of Fashion Design and Management, 3(1): 47-56, 2021.
  • T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143: 172-196, 2018.
  • J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, F. Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Composites Part B: Engineering, 117: 138-149, 2017.
  • O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in manufacturing, 3: 42-53, 2015.
  • B.D. de Castro, F.D.C. Magalhães, T.H. Panzera, J.C. Campos Rubio, An assessment of fully integrated polymer sandwich structures designed by additive manufacturing, Journal of Materials Engineering and Performance, 30: 5031-5038, 2021.
  • H.Y. Sarvestani, A.H. Akbarzadeh, A. Mirbolghasemi, K. Hermenean, 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability, Materials & Design, 160: 179-193, 2018.
  • I. Ullah, M. Brandt, S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures, Materials & Design, 92: 937-948, 2016.
  • H. Mozafari, S. Khatami, H. Molatefi, Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress–Numerical study, Materials & Design, 66: 400-411, 2015.
  • Y. Feng, H. Qiu, Y. Gao, H. Zheng, J. Tan, Creative design for sandwich structures: A review, International Journal of Advanced Robotic Systems, 17(3): 1729881420921327, 2020.
  • N. Kladovasilakis, P. Charalampous, K. Tsongas, I. Kostavelis, D. Tzetzis, D. Tzovaras, Experimental and computational investigation of lattice sandwich structures constructed by additive manufacturing Technologies, Journal of Manufacturing and Materials Processing, 5(3): 95, 2021.
  • V. Acanfora, R. Castaldo, A. Riccio, On the effects of core microstructure on energy absorbing capabilities of sandwich panels intended for additive manufacturing, Materials, 15(4): 1291, 2022.
  • A. Rahimijonoush, M. Bayat, Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios, Thin-Walled Structures, 157: 107079, 2020.
  • H.P. Konka, M.A. Wahab, K. Lian, On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors, ASME. J. Eng. Mater. Technol, 134(1): 011010, 2012.
  • S.K. Dhinesh, P.S. Arun, K.K. Senthil, A. Megalingam, Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials, Materials Today: Proceedings, 45: 1175-1180, 2021.
  • P.K. Patro, S. Kandregula, M.S. Khan, S. Das, Investigation of mechanical properties of 3D printed sandwich structures using PLA and ABS, Materials Today: Proceedings, 2023.
  • P.K. Mishra, P. Senthil, Prediction of in-plane stiffness of multi-material 3D printed laminate parts fabricated by FDM process using CLT and its mechanical behaviour under tensile load, Materials Today Communications, 23: 100955, 2020.
  • P.V. Yap, M.Y. Chan, S.C. Koay, Preliminary Study on Mechanical Properties of 3D Printed Multi-materials ABS/PC Parts: Effect of Printing Parameters, Journal of Physical Science, 32(2): 87-104, 2021.
  • F. Wang, Y. Ji, C. Chen, G. Zhang, Z. Chen, Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane, Journal of Polymer Research, 29(8): 320, 2022.
  • B. Arifvianto, B.E. Satiti, U.A. Salim, Suyitno, A. Nuryanti, M. Mahardika, Mechanical properties of the FFF sandwich-structured parts made of PLA/TPU multi-material, Progress in Additive Manufacturing, 7(6): 1213-1223, 2022.
  • S. Kumar, R. Singh, M. Singh, Multi-material 3D printed PLA/PA6-TiO2 composite matrix: Rheological, thermal, tensile, morphological and 4D capabilities, Advances in Materials and Processing Technologies, 8(2): 2329-2348, 2022.
  • D.M. Baca Lopez, R. Ahmad, Tensile mechanical behaviour of multi-polymer sandwich structures via fused deposition modelling, Polymers, 12(3): 651, 2020.
  • Q. Liu, Z. Zhang, D. Yavas, W. Shen, D. Wu, Multi-material additive manufacturing: effect of process parameters on flexural behavior of soft-hard sandwich beams, Rapid Prototyping Journal, 29(5): 885-896, 2023.
  • A.C. Pinho, A.P. Piedade, Sandwich multi-material 3D-printed polymers: influence of aging on the impact and flexure resistances, Polymers, 13(22): 4030, 2021.
  • S. Kumar, I. Singh, S.S.R. Koloor, D. Kumar, M.Y. Yahya, On laminated object manufactured FDM-printed ABS/TPU multimaterial specimens: An insight into mechanical and morphological characteristics, Polymers, 14(19): 4066, 2022.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Optimizasyon Teknikleri
Bölüm Araştırma Makaleleri
Yazarlar

İnayet Burcu Toprak 0000-0002-0894-5573

Erken Görünüm Tarihi 23 Ağustos 2024
Yayımlanma Tarihi 30 Ağustos 2024
Gönderilme Tarihi 11 Haziran 2024
Kabul Tarihi 9 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Toprak, İ. B. (2024). Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi ile Çoklu Yanıt Optimizasyonu. İmalat Teknolojileri Ve Uygulamaları, 5(2), 89-103. https://doi.org/10.52795/mateca.1499800
AMA Toprak İB. Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi ile Çoklu Yanıt Optimizasyonu. MATECA. Ağustos 2024;5(2):89-103. doi:10.52795/mateca.1499800
Chicago Toprak, İnayet Burcu. “Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi Ile Çoklu Yanıt Optimizasyonu”. İmalat Teknolojileri Ve Uygulamaları 5, sy. 2 (Ağustos 2024): 89-103. https://doi.org/10.52795/mateca.1499800.
EndNote Toprak İB (01 Ağustos 2024) Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi ile Çoklu Yanıt Optimizasyonu. İmalat Teknolojileri ve Uygulamaları 5 2 89–103.
IEEE İ. B. Toprak, “Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi ile Çoklu Yanıt Optimizasyonu”, MATECA, c. 5, sy. 2, ss. 89–103, 2024, doi: 10.52795/mateca.1499800.
ISNAD Toprak, İnayet Burcu. “Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi Ile Çoklu Yanıt Optimizasyonu”. İmalat Teknolojileri ve Uygulamaları 5/2 (Ağustos 2024), 89-103. https://doi.org/10.52795/mateca.1499800.
JAMA Toprak İB. Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi ile Çoklu Yanıt Optimizasyonu. MATECA. 2024;5:89–103.
MLA Toprak, İnayet Burcu. “Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi Ile Çoklu Yanıt Optimizasyonu”. İmalat Teknolojileri Ve Uygulamaları, c. 5, sy. 2, 2024, ss. 89-103, doi:10.52795/mateca.1499800.
Vancouver Toprak İB. Eriyik Yığma Modelleme Süreç Parametrelerinin Taguchi Tabanlı Gri İlişkisel Analiz Yöntemi ile Çoklu Yanıt Optimizasyonu. MATECA. 2024;5(2):89-103.