Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger

Yıl 2025, Cilt: 6 Sayı: 2, 184 - 201, 30.08.2025
https://doi.org/10.52795/mateca.1703500

Öz

Recently, heat exchangers based on triply periodic minimal surface (TPMS) structures have attracted increasing interest in engineering applications due to their high surface-to-volume ratio, compact design, superior thermal performance, and the feasibility of manufacturing these complex geometries using additive manufacturing technologies. This study, the thermal performance and flow characteristics of a gyroid heat exchanger are numerically investigated using air-air and water-water based Al2O3 nanofluids as working fluids. Firstly, the numerical model for the air-air heat exchanger is validated against reference data from the literature for the hot fluid side, then thermal analysis was conducted for at different Recold numbers. As the Re increased, the heat transfer coefficient, heat transfer and Nusselt number increased. Subsequently, Al2O3 nanoparticles were added to the hot-side water base fluid at various volume concentrations (0%, 0.1%, 0.3%, 0.5%), and simulations were conducted under different Rehot-Recold combinations. It was observed that nanofluid concentration and Reynolds number affected the heat transfer coefficient, heat transfer rate, thermal efficiency and Nusselt number. In addition, a decrease in thermal efficiency was observed with the addition of 0-0.3% nanoparticles, followed by a slight increase between 0.3-0.5%. Studies examining the use of nanofluids in TPMS-gyroid structures are generally limited to heat sink applications; this study provides a contribution to the literature by investigating the effect of nanofluids in a compact cross-flow heat exchanger with simultaneous hot and cold fluid provided.

Kaynakça

  • [1] F. Careri, R.H.U. Khan, C. Todd, M.M. Attallah, Additive manufacturing of heat exchangers in aerospace applications: a review, Applied Thermal Engineering 235 (2023) 121387. https://doi.org/10.1016/j.applthermaleng.2023.121387.
  • [2] I. Kaur, P. Singh, State-of-the-art in heat exchanger additive manufacturing, International Journal of Heat and Mass Transfer 178 (2021) 121600. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121600.
  • [3] S.A. Niknam, M. Mortazavi, D. Li, Additively manufactured heat exchangers: a review on opportunities and challenges, International Journal of Advanced Manufacturing Technology 112 (2021) 601–618. https://doi.org/10.1007/s00170-020-06372-w.
  • [4] H. Peng, F. Gao, W. Hu, Design, modeling and characterization of triply periodic minimal surface heat exchangers with additive manufacturing, in: Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Texas, 2019: pp. 2325–2337.
  • [5] D. Liang, C. Shi, W. Li, W. Chen, M.K. Chyu, Design, flow characteristics and performance evaluation of bioinspired heat exchangers based on triply periodic minimal surfaces, International Journal of Heat and Mass Transfer 201 (2023) 123620. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123620.
  • [6] D. Liang, K. Yang, H. Gu, W. Chen, M.K. Chyu, The effect of unit size on the flow and heat transfer performance of the “Schwartz-D” heat exchanger, International Journal of Heat and Mass Transfer 214 (2023) 124367. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124367.
  • [7] W. Tang, H. Zhou, Y. Zeng, M. Yan, C. Jiang, P. Yang, Q. Li, Z. Li, J. Fu, Y. Huang, Y. Zhao, Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp, International Journal of Heat and Mass Transfer 201 (2023) 123642. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123642.
  • [8] A. Barakat, Y. Pan, B.B. Sun, Comparative heat transfer performance of TPMS structures: spotlight on Fisch Koch S versus gyroid, diamond and SplitP lattices, in: E3S Web of Conferences ICEMEE 2024, Malaysia, 2024: pp. 1–4. https://doi.org/10.1051/e3sconf/202456001009.
  • [9] A. Barakat, B.B. Sun, Controlling TPMS lattice deformation for enhanced convective heat transfer: a comparative study of diamond and gyroid structures, International Communications in Heat and Mass Transfer 154 (2024) 107443. https://doi.org/10.1016/j.icheatmasstransfer.2024.107443.
  • [10] S. Samson, P. Tran, P. Marzocca, Design and modelling of porous gyroid heatsinks: Influences of cell size, porosity and material variation, Applied Thermal Engineering 235 (2023) 121296. https://doi.org/10.1016/j.applthermaleng.2023.121296.
  • [11] A. Barakat, B.B. Sun, Enhanced convective heat transfer in new triply periodic minimal surface structures: Numerical and experimental investigation, International Journal of Heat and Mass Transfer 227 (2024) 125538. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125538.
  • [12] D. Mahmoud, S.R.S. Tandel, M. Yakout, M. Elbestawi, F. Mattiello, S. Paradiso, C. Ching, M. Zaher, M. Abdelnabi, Enhancement of heat exchanger performance using additive manufacturing of gyroid lattice structures, International Journal of Advanced Manufacturing Technology 126 (2023) 4021–4036. https://doi.org/10.1007/s00170-023-11362-9.
  • [13] A. Samad, W.H. Lai, Experimental and simulation analysis of heat transfer in gyroid heat exchangers with variable flow channels, International Journal of Heat and Mass Transfer 239 (2025) 126530. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126530.
  • [14] G.A. Kilic, Performance evaluation of triply periodic minimal surface heat exchangers using nanofluids at high flow rates for enhanced energy efficiency, Applied Sciences 15 (2025) 4140. https://doi.org/10.3390/app15084140.
  • [15] nTop Inc., nTop Release 5.2.2, https://www.ntop.com/, (2025).
  • [16] A.H. Schoen, Infinite periodic minimal surfaces without self-intersections (NASA Technical Note TN D-5541, 1970), https://ntrs.nasa.gov/citations/19700020472, (2025).
  • [17] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151–170. https://doi.org/10.1080/08916159808946559.
  • [18] S.-Q. Zhou, R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Applied Physics Letters 92 (2008). https://doi.org/10.1063/1.2890431.
  • [19] Y.A. Çengel, A.J. Ghajar, Heat and mass transfer: Fundamentals and applications, McGraw-Hill Education, New York, USA, 2011.
  • [20] QED Fusion Materials Database, Alumina (Al₂O₃) material properties, https://qedfusion.org/LIB/PROPS/PANOS/al2o3.html , (2025).
  • [21] W. Li, G. Yu, Z. Yu, Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles, Applied Thermal Engineering 179 (2020) 115686. https://doi.org/10.1016/j.applthermaleng.2020.115686.
  • [22] D. Liang, G. He, W. Chen, Y. Chen, M.K. Chyu, Fluid flow and heat transfer performance for micro-lattice structures fabricated by selective laser melting, International Journal of Thermal Sciences 172 (2022) 107312. https://doi.org/10.1016/j.ijthermalsci.2021.107312.
  • [23] M. Yanardağ, Numerical investigation of microchannels heat transfer devices by using Nanofluids, Master’s Thesis, Gazi University,Graduate School of Natural and Applied Sciences, 2023.

Gyroid Yapıda Bir Isı Eşanjöründe Nanoakışkan Kullanımının Isıl Performans ve Akış Özelliklerine Etkilerinin Sayısal Olarak İncelenmesi

Yıl 2025, Cilt: 6 Sayı: 2, 184 - 201, 30.08.2025
https://doi.org/10.52795/mateca.1703500

Öz

Geleneksel ısı eşanjörlerine kıyasla üçlü periyodik minimal yüzey yapıları kullanılarak tasarlanan ısı eşanjörleri sundukları yüksek yüzey/hacim alanı, kompakt yapıları, üstün ısıl performans kapasiteleri ve eklemeli imalat teknolojisi ile bu özgün yapıların üretilebilirliği nedenleriyle son yıllarda mühendislik uygulamaları için ilgi çekici hale gelmiştir. Bu çalışmada ÜPMY kafes tiplerinden biri olan gyroid yapıda ısı eşanjöründe çalışma akışkanları hava-hava ve su-su bazlı Al2O3 nanoakışkanı kullanıldığında ısıl performans ve akış özellikleri sayısal olarak incelenmiştir. İlk aşamada, hava-hava ısı eşanjörü için sayısal model referans literatür sıcak akışkan sonuçlarıyla doğrulanmış, ardından farklı Resoğ sayılarında ısıl analiz çalışması gerçekleştirilmiştir. Sonuçlar Reynolds sayısı arttıkça ısı transfer katsayısının, ısı transferinin ve Nusselt sayısının arttığını göstermiştir. İkinci aşamada, sıcak akışkan su temel akışkanına farklı hacim oranlarında (%0, %0,1, %0,3, %0,5) Al2O3 ilave edilmiş ve farklı Resıc-Resoğ kombinasyonlarında simülasyon çalışmaları gerçekleştirilmiştir. Nanoakışkan konsantrasyonu ve Reynolds sayısının ısı transfer katsayısı, ısı transfer miktarı, termal verimlilik ve Nusselt sayısını etkilediği görülmüştür. Ayrıca termal verimlikte %0-0,3 nanopartikül ilavesinde azalma, bunu takiben %0,3-0,5 arasında bir miktar artış görülmüştür. ÜPMY-gyroid yapılar için nanoakışkan kullanımının incelendiği çalışmalar genellikle ısı alıcı uygulamalarıyla sınırlıdır; bu çalışma ise karşılıklı akışkan geçişinin sağlandığı çapraz akışkanlı kompakt bir ısı eşanjöründe nanoakışkan etkisini inceleyerek literatüre özgün bir katkı sağlamaktadır.

Kaynakça

  • [1] F. Careri, R.H.U. Khan, C. Todd, M.M. Attallah, Additive manufacturing of heat exchangers in aerospace applications: a review, Applied Thermal Engineering 235 (2023) 121387. https://doi.org/10.1016/j.applthermaleng.2023.121387.
  • [2] I. Kaur, P. Singh, State-of-the-art in heat exchanger additive manufacturing, International Journal of Heat and Mass Transfer 178 (2021) 121600. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121600.
  • [3] S.A. Niknam, M. Mortazavi, D. Li, Additively manufactured heat exchangers: a review on opportunities and challenges, International Journal of Advanced Manufacturing Technology 112 (2021) 601–618. https://doi.org/10.1007/s00170-020-06372-w.
  • [4] H. Peng, F. Gao, W. Hu, Design, modeling and characterization of triply periodic minimal surface heat exchangers with additive manufacturing, in: Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Texas, 2019: pp. 2325–2337.
  • [5] D. Liang, C. Shi, W. Li, W. Chen, M.K. Chyu, Design, flow characteristics and performance evaluation of bioinspired heat exchangers based on triply periodic minimal surfaces, International Journal of Heat and Mass Transfer 201 (2023) 123620. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123620.
  • [6] D. Liang, K. Yang, H. Gu, W. Chen, M.K. Chyu, The effect of unit size on the flow and heat transfer performance of the “Schwartz-D” heat exchanger, International Journal of Heat and Mass Transfer 214 (2023) 124367. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124367.
  • [7] W. Tang, H. Zhou, Y. Zeng, M. Yan, C. Jiang, P. Yang, Q. Li, Z. Li, J. Fu, Y. Huang, Y. Zhao, Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp, International Journal of Heat and Mass Transfer 201 (2023) 123642. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123642.
  • [8] A. Barakat, Y. Pan, B.B. Sun, Comparative heat transfer performance of TPMS structures: spotlight on Fisch Koch S versus gyroid, diamond and SplitP lattices, in: E3S Web of Conferences ICEMEE 2024, Malaysia, 2024: pp. 1–4. https://doi.org/10.1051/e3sconf/202456001009.
  • [9] A. Barakat, B.B. Sun, Controlling TPMS lattice deformation for enhanced convective heat transfer: a comparative study of diamond and gyroid structures, International Communications in Heat and Mass Transfer 154 (2024) 107443. https://doi.org/10.1016/j.icheatmasstransfer.2024.107443.
  • [10] S. Samson, P. Tran, P. Marzocca, Design and modelling of porous gyroid heatsinks: Influences of cell size, porosity and material variation, Applied Thermal Engineering 235 (2023) 121296. https://doi.org/10.1016/j.applthermaleng.2023.121296.
  • [11] A. Barakat, B.B. Sun, Enhanced convective heat transfer in new triply periodic minimal surface structures: Numerical and experimental investigation, International Journal of Heat and Mass Transfer 227 (2024) 125538. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125538.
  • [12] D. Mahmoud, S.R.S. Tandel, M. Yakout, M. Elbestawi, F. Mattiello, S. Paradiso, C. Ching, M. Zaher, M. Abdelnabi, Enhancement of heat exchanger performance using additive manufacturing of gyroid lattice structures, International Journal of Advanced Manufacturing Technology 126 (2023) 4021–4036. https://doi.org/10.1007/s00170-023-11362-9.
  • [13] A. Samad, W.H. Lai, Experimental and simulation analysis of heat transfer in gyroid heat exchangers with variable flow channels, International Journal of Heat and Mass Transfer 239 (2025) 126530. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126530.
  • [14] G.A. Kilic, Performance evaluation of triply periodic minimal surface heat exchangers using nanofluids at high flow rates for enhanced energy efficiency, Applied Sciences 15 (2025) 4140. https://doi.org/10.3390/app15084140.
  • [15] nTop Inc., nTop Release 5.2.2, https://www.ntop.com/, (2025).
  • [16] A.H. Schoen, Infinite periodic minimal surfaces without self-intersections (NASA Technical Note TN D-5541, 1970), https://ntrs.nasa.gov/citations/19700020472, (2025).
  • [17] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151–170. https://doi.org/10.1080/08916159808946559.
  • [18] S.-Q. Zhou, R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Applied Physics Letters 92 (2008). https://doi.org/10.1063/1.2890431.
  • [19] Y.A. Çengel, A.J. Ghajar, Heat and mass transfer: Fundamentals and applications, McGraw-Hill Education, New York, USA, 2011.
  • [20] QED Fusion Materials Database, Alumina (Al₂O₃) material properties, https://qedfusion.org/LIB/PROPS/PANOS/al2o3.html , (2025).
  • [21] W. Li, G. Yu, Z. Yu, Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles, Applied Thermal Engineering 179 (2020) 115686. https://doi.org/10.1016/j.applthermaleng.2020.115686.
  • [22] D. Liang, G. He, W. Chen, Y. Chen, M.K. Chyu, Fluid flow and heat transfer performance for micro-lattice structures fabricated by selective laser melting, International Journal of Thermal Sciences 172 (2022) 107312. https://doi.org/10.1016/j.ijthermalsci.2021.107312.
  • [23] M. Yanardağ, Numerical investigation of microchannels heat transfer devices by using Nanofluids, Master’s Thesis, Gazi University,Graduate School of Natural and Applied Sciences, 2023.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal Modelleme ve Mekanik Karakterizasyon, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gözde Keskin 0000-0001-6382-4881

Gökhan Küçüktürk 0000-0002-2978-8968

Oğuz Turgut 0000-0001-5480-1039

Gönderilme Tarihi 21 Mayıs 2025
Kabul Tarihi 3 Haziran 2025
Erken Görünüm Tarihi 26 Ağustos 2025
Yayımlanma Tarihi 30 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Keskin, G., Küçüktürk, G., & Turgut, O. (2025). Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger. Manufacturing Technologies and Applications, 6(2), 184-201. https://doi.org/10.52795/mateca.1703500
AMA Keskin G, Küçüktürk G, Turgut O. Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger. MATECA. Ağustos 2025;6(2):184-201. doi:10.52795/mateca.1703500
Chicago Keskin, Gözde, Gökhan Küçüktürk, ve Oğuz Turgut. “Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger”. Manufacturing Technologies and Applications 6, sy. 2 (Ağustos 2025): 184-201. https://doi.org/10.52795/mateca.1703500.
EndNote Keskin G, Küçüktürk G, Turgut O (01 Ağustos 2025) Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger. Manufacturing Technologies and Applications 6 2 184–201.
IEEE G. Keskin, G. Küçüktürk, ve O. Turgut, “Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger”, MATECA, c. 6, sy. 2, ss. 184–201, 2025, doi: 10.52795/mateca.1703500.
ISNAD Keskin, Gözde vd. “Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger”. Manufacturing Technologies and Applications 6/2 (Ağustos2025), 184-201. https://doi.org/10.52795/mateca.1703500.
JAMA Keskin G, Küçüktürk G, Turgut O. Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger. MATECA. 2025;6:184–201.
MLA Keskin, Gözde vd. “Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger”. Manufacturing Technologies and Applications, c. 6, sy. 2, 2025, ss. 184-01, doi:10.52795/mateca.1703500.
Vancouver Keskin G, Küçüktürk G, Turgut O. Numerical Investigation of the Effects of Using Nanofluid on Thermal Performance and Flow Properties in a Gyroid Structure Heat Exchanger. MATECA. 2025;6(2):184-201.