Araştırma Makalesi
BibTex RIS Kaynak Göster

Baskı Parametrelerinin PLA-CF Kompozitlerin Eğilme Mukavemeti ve Sertlik Özelliklerine Etkisi: Deneysel ve İstatistiksel Bir Yaklaşım

Yıl 2025, Cilt: 6 Sayı: 3, 272 - 286, 30.12.2025
https://doi.org/10.52795/mateca.1724130

Öz

Katmanlı imalatın en yaygın yöntemlerinden biri olan Ergimiş Filamentle Üretim (FFF), özellikle karbon fiber takviyeli polilaktik asit (PLA-CF) kompozitler ile hafiflik, dayanım ve tasarım esnekliği gerektiren yapısal uygulamalarda kritik bir öneme sahiptir. Bu çalışmada, dolgu oranı (30–70–100%), tarama açısı (0°–22.5°–45°) ve baskı yönelimi (0°–45°–90°) gibi işlem parametrelerinin PLA-CF numunelerinin eğilme dayanımı ve sertliği üzerindeki etkileri Box-Behnken Deney Tasarımı ile araştırılmıştır. Parametre etkileşimlerini nicel olarak değerlendirmek ve kestirimsel modeller geliştirmek amacıyla Yanıt Yüzey Yöntemi (RSM) ve Varyans Analizi (ANOVA) uygulanmıştır. Parametreler arasında, dolgu oranı %73.29 katkı oranı ile en belirgin etkiye sahip bulunmuştur. En yüksek mekanik performans, %100 dolgu oranı, 31.36° tarama açısı ve 0° baskı yönelimi ile elde edilmiştir. Geliştirilen modeller eğilme dayanımı için %97.19 ve sertlik için %99.57 R² değerleri ile yüksek doğruluk göstermiştir. Deneysel doğrulama sonuçları ile model tahminleri arasındaki sapmaların %10.63 (eğilme dayanımı) ve %9.20 (sertlik) düzeyinde kalması, istatistiksel modellerin güvenilirliğini ortaya koymuştur. Bu çalışmanın yeniliği, PLA-CF kompozitlerde farklı baskı varyasyonlarının mekanik performansa etkisini sistematik olarak ortaya koyması ve optimum baskı parametrelerini deneysel ve istatistiksel yöntemlerle birlikte tanımlamasıdır. Elde edilen bulgular, PLA-CF kompozitlerin taşıyıcı yapısal uygulamalarda güvenilir şekilde kullanılmasına yönelik kapsamlı bir araştırma sunmaktadır.

Kaynakça

  • F.H. Öztürk, Ö. Öz, Heat-treatment and water immersion effect on the mechanical properties and joint strength of 3D-printed polylactic acid parts, Polym Adv Technol 35 (2024) e6624.
  • D. Fico, D. Rizzo, R. Casciaro, C. Esposito Corcione, A review of polymer-based materials for fused filament fabrication (FFF): Focus on sustainability and recycled materials, Polymers (Basel) 14 (2022). https://doi.org/10.3390/polym14030465.
  • J. Pratama, S.I. Cahyono, S. Suyitno, M.A. Muflikhun, U.A. Salim, M. Mahardika, B. Arifvianto, A review on reinforcement methods for polymeric materials processed using fused filament fabrication (FFF), Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13224022.
  • Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, C. Yan, A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts, The International Journal of Advanced Manufacturing Technology 102 (2019) 2877–2889. https://doi.org/10.1007/s00170-019-03332-x.
  • M. Ahmadifar, K. Benfriha, M. Shirinbayan, A. Tcharkhtchi, Additive manufacturing of polymer-based composites using fused filament fabrication (FFF): a Review, Applied Composite Materials 28 (2021) 1335–1380. https://doi.org/10.1007/s10443-021-09933-8.
  • F.S. Senatov, K. V. Niaza, M.Y. Zadorozhnyy, A. V. Maksimkin, S.D. Kaloshkin, Y.Z. Estrin, Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds, J Mech Behav Biomed Mater 57 (2016) 139–148. https://doi.org/10.1016/J.JMBBM.2015.11.036.
  • G. Ye, T. Gu, B. Chen, H. Bi, Y. Hu, Mechanical, thermal properties and shape memory behaviors of PLA/PCL/PLA-g-GMA blends, Polym Eng Sci 63 (2023) 2084–2092. https://doi.org/https://doi.org/10.1002/pen.26347.
  • L.J. Love, V. Kunc, O. Rios, C.E. Duty, A.M. Elliott, B.K. Post, R.J. Smith, C.A. Blue, The importance of carbon fiber to polymer additive manufacturing, J Mater Res 29 (2014) 1893–1898. https://doi.org/10.1557/jmr.2014.212.
  • F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos B Eng 80 (2015) 369–378. https://doi.org/10.1016/J.COMPOSITESB.2015.06.013.
  • Y. Li, S. Gao, R. Dong, X. Ding, X. Duan, Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling, J Mater Eng Perform 27 (2018) 492–500. https://doi.org/10.1007/s11665-017-3065-0.
  • A. El Magri, Khalil El Mabrouk, Sébastien Vaudreuil, Mohamed Ebn Touhami, Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling, Journal of Thermoplastic Composite Materials 34 (2019) 581–595. https://doi.org/10.1177/0892705719847244.
  • A. Temiz, A response surface methodology investigation into the optimization of manufacturing time and quality for FFF 3D printed PLA parts, Rapid Prototyp J 30 (2024) 2007–2020. https://doi.org/10.1108/RPJ-01-2024-0004.
  • I. Ferreira, M. Machado, F. Alves, A. Torres Marques, A review on fibre reinforced composite printing via FFF, Rapid Prototyp J 25 (2019) 972–988. https://doi.org/10.1108/RPJ-01-2019-0004.
  • X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Compos Part A Appl Sci Manuf 88 (2016) 198–205. https://doi.org/10.1016/J.COMPOSITESA.2016.05.032.
  • S.R. Rajpurohit, H.K. Dave, Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer, Adv Manuf 6 (2018) 430–441. https://doi.org/10.1007/s40436-018-0237-6.
  • C.-Y. Lee, C.-Y. Liu, The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication, Addit Manuf 25 (2019) 196–203. https://doi.org/https://doi.org/10.1016/j.addma.2018.11.012.
  • L. Malagutti, G. Ronconi, M. Zanelli, F. Mollica, V. Mazzanti, A Post-processing method for improving the mechanical properties of fused-filament-fabricated 3D-printed parts, Processes 10 (2022). https://doi.org/10.3390/pr10112399.
  • B.G. Çakan, Effects of raster angle on tensile and surface roughness properties of various FDM filaments, Journal of Mechanical Science and Technology 35 (2021) 3347–3353. https://doi.org/10.1007/s12206-021-0708-8.
  • A. Temiz, The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures, Journal of the Brazilian Society of Mechanical Sciences and Engineering 46 (2024) 121. https://doi.org/10.1007/s40430-024-04709-0.
  • ASTM, ASTM 790-17 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, (2017). https://www.astm.org/d0790-17.html.
  • Esun PLA, Pla Properties. 2024, (2024). https://www.esun3d.com/pla-product/ (accessed September 17, 2025).
  • E. Alarcon, L. Heller, Deformation infrared calorimetry for materials characterization applied to study cyclic superelasticity in NiTi wires, Mater Des 199 (2021) 109406. https://doi.org/10.1016/J.MATDES.2020.109406.
  • X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Compos B Eng 110 (2017) 442–458.
  • ESUN, ESUN PLA-CF Mechanical Properties, (2024). https://www.esun3d.com/uploads/ePLA-CF-Filament-MSDS.pdf (accessed June 16, 2025).
  • J.M. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núñez, Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Mater Des 124 (2017) 143–157. https://doi.org/10.1016/J.MATDES.2017.03.065.
  • K. Wang, G. Research, F. Lam, Quadratic rsm models of processing parameters for three-layer oriented flakeboards, (1999) 173–186.
  • İ.A. Karamanli, M.S. Gök, Y. Küçük, O. Ünal, Study of the Wear Resistance Plasma Nitrided GGG60 by Optimization of Surface Treatment Conditions Using Response Surface Methodology, International Journal of Metalcasting 19 (2025) 387–403. https://doi.org/10.1007/s40962-024-01310-y.
  • T.R. Arunprasand, P. and Nallasamy, Advancements in optimizing mechanical performance of 3d printed polymer matrix composites via microstructural refinement and processing enhancements: A comprehensive review, Mechanics of Advanced Materials and Structures (n.d.) 1–19. https://doi.org/10.1080/15376494.2024.2426776.
  • J. Mayén, A. Del Carmen Gallegos-Melgar, I. Pereyra, C.A. Poblano-Salas, M. Hernández-Hernández, J.A. Betancourt-Cantera, V.H. Mercado-Lemus, M. Del Angel Monroy, Descriptive and inferential study of hardness, fatigue life, and crack propagation on PLA 3D-printed parts, Mater Today Commun 32 (2022) 103948. https://doi.org/10.1016/J.MTCOMM.2022.103948.
  • H. Gonabadi, Y. Chen, A. Yadav, S. Bull, Investigation of the effect of raster angle, build orientation, and infill density on the elastic response of 3D printed parts using finite element microstructural modeling and homogenization techniques, The International Journal of Advanced Manufacturing Technology 118 (2022) 1485–1510.
  • M. Alagheband, M. Kosarimovahhed, Q. Zhang, S. Jung, Creep and failure of 3D-printed polymers: Impact of infill patterns and densities on shear strain and strength, Eng Fail Anal 175 (2025) 109568. https://doi.org/10.1016/J.ENGFAILANAL.2025.109568.
  • S. Turaka, V. Jagannati, B. Pappula, S. Makgato, Impact of infill density on morphology and mechanical properties of 3D printed ABS/CF-ABS composites using design of experiments, Heliyon 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e29920.
  • A. Kaptan, F. Kartal, The Effect of Fill Rate on Mechanical Properties of PLA Printed Samples, Journal of the Institute of Science and Technology 10 (2020) 1919–1927. https://doi.org/10.21597/jist.706003.
  • J.H. Porter, C. T. M., F. S. L., P.S. and Harvey, Influence of infill properties on flexural rigidity of 3D-printed structural members, Virtual Phys Prototyp 14 (2019) 148–159. https://doi.org/10.1080/17452759.2018.1537064.
  • S.W. Ahmed, G. Hussain, K. Altaf, S. Ali, M. Alkahtani, M.H. Abidi, A. Alzabidi, On the Effects of Process Parameters and Optimization of Interlaminate Bond Strength in 3D Printed ABS/CF-PLA Composite, Polymers (Basel) 12 (2020). https://doi.org/10.3390/polym12092155.
  • M. Günay, Modeling of tensile and bending strength for PLA parts produced by FDM, International Journal of 3D Printing Technologies and Digital Industry 3 (2019) 204–211.
  • S. Fouda, W. Ji, M.M. Gad, M.A. AlGhamdi, N. Rohr, Flexural strength and surface properties of 3D-printed denture base resins—effect of build angle, Layer Thickness and Aging, Materials 18 (2025).
  • Ş. Şirin, E. Aslan, G. Akincioğlu, Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance, Rapid Prototyp J 29 (2023) 157–165. https://doi.org/10.1108/RPJ-03-2022-0081.
  • Ö. Öz, F.H. Öztürk, Yazdırma açisinin 3B yazicida üretilen PLA numunenin mekanik özellikleri üzerine etkisinin deneysel ve sonlu elemanlar metodu ile incelenmesi, Politeknik Dergisi 26 (2023) 529–540. https://doi.org/10.2339/politeknik.882313.
  • E. Zurnacı, Optimization of 3D printing parameters to mechanical strength improvement of sustainable printing material using RSM, International Journal of 3D Printing Technologies and Digital Industry 7 (2023) 38–46. https://doi.org/10.46519/ij3dptdi.1231076.
  • T. Yao, J. Ye, Z. Deng, K. Zhang, Y. Ma, H. Ouyang, Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses, Compos B Eng 188 (2020) 107894.

Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach

Yıl 2025, Cilt: 6 Sayı: 3, 272 - 286, 30.12.2025
https://doi.org/10.52795/mateca.1724130

Öz

Fused Filament Fabrication (FFF), one of the most widely used additive manufacturing methods, is of critical importance in structural applications requiring lightweight, strength, and design flexibility, especially with carbon fiber-reinforced polylactic acid (PLA-CF) composites. This study investigates the effects of infill density (30–70–100%), raster angle (0°–22.5°–45°), and build orientation (0°–45°–90°) on the flexural strength and hardness of PLA-CF samples using a Box-Behnken design. Response Surface Methodology (RSM) and Analysis of Variance (ANOVA) were applied to develop predictive models and evaluate parameter interactions quantitatively. Among the parameters, infill density had the most pronounced effect, contributing 73.29% to the variation in flexural strength. Optimal performance was achieved with 100% infill density, a raster angle of 31.36°, and a build orientation of 0°. The developed models demonstrated high accuracy with R² values of 97.19% for flexural strength and 99.57% for hardness. Validation experiments revealed deviations of 10.63% (flexural strength) and 9.20% (hardness) from model predictions, confirming the robustness of the statistical models. The novelty of this work lies in systematically demonstrating the influence of different printing variations on the mechanical performance of PLA-CF composites and defining the optimum printing parameters through a combination of experimental and statistical approaches. These findings provide comprehensive research for the reliable use of PLA-CF composites in load-bearing structural applications.

Kaynakça

  • F.H. Öztürk, Ö. Öz, Heat-treatment and water immersion effect on the mechanical properties and joint strength of 3D-printed polylactic acid parts, Polym Adv Technol 35 (2024) e6624.
  • D. Fico, D. Rizzo, R. Casciaro, C. Esposito Corcione, A review of polymer-based materials for fused filament fabrication (FFF): Focus on sustainability and recycled materials, Polymers (Basel) 14 (2022). https://doi.org/10.3390/polym14030465.
  • J. Pratama, S.I. Cahyono, S. Suyitno, M.A. Muflikhun, U.A. Salim, M. Mahardika, B. Arifvianto, A review on reinforcement methods for polymeric materials processed using fused filament fabrication (FFF), Polymers (Basel) 13 (2021). https://doi.org/10.3390/polym13224022.
  • Z. Liu, Y. Wang, B. Wu, C. Cui, Y. Guo, C. Yan, A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts, The International Journal of Advanced Manufacturing Technology 102 (2019) 2877–2889. https://doi.org/10.1007/s00170-019-03332-x.
  • M. Ahmadifar, K. Benfriha, M. Shirinbayan, A. Tcharkhtchi, Additive manufacturing of polymer-based composites using fused filament fabrication (FFF): a Review, Applied Composite Materials 28 (2021) 1335–1380. https://doi.org/10.1007/s10443-021-09933-8.
  • F.S. Senatov, K. V. Niaza, M.Y. Zadorozhnyy, A. V. Maksimkin, S.D. Kaloshkin, Y.Z. Estrin, Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds, J Mech Behav Biomed Mater 57 (2016) 139–148. https://doi.org/10.1016/J.JMBBM.2015.11.036.
  • G. Ye, T. Gu, B. Chen, H. Bi, Y. Hu, Mechanical, thermal properties and shape memory behaviors of PLA/PCL/PLA-g-GMA blends, Polym Eng Sci 63 (2023) 2084–2092. https://doi.org/https://doi.org/10.1002/pen.26347.
  • L.J. Love, V. Kunc, O. Rios, C.E. Duty, A.M. Elliott, B.K. Post, R.J. Smith, C.A. Blue, The importance of carbon fiber to polymer additive manufacturing, J Mater Res 29 (2014) 1893–1898. https://doi.org/10.1557/jmr.2014.212.
  • F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos B Eng 80 (2015) 369–378. https://doi.org/10.1016/J.COMPOSITESB.2015.06.013.
  • Y. Li, S. Gao, R. Dong, X. Ding, X. Duan, Additive Manufacturing of PLA and CF/PLA Binding Layer Specimens via Fused Deposition Modeling, J Mater Eng Perform 27 (2018) 492–500. https://doi.org/10.1007/s11665-017-3065-0.
  • A. El Magri, Khalil El Mabrouk, Sébastien Vaudreuil, Mohamed Ebn Touhami, Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling, Journal of Thermoplastic Composite Materials 34 (2019) 581–595. https://doi.org/10.1177/0892705719847244.
  • A. Temiz, A response surface methodology investigation into the optimization of manufacturing time and quality for FFF 3D printed PLA parts, Rapid Prototyp J 30 (2024) 2007–2020. https://doi.org/10.1108/RPJ-01-2024-0004.
  • I. Ferreira, M. Machado, F. Alves, A. Torres Marques, A review on fibre reinforced composite printing via FFF, Rapid Prototyp J 25 (2019) 972–988. https://doi.org/10.1108/RPJ-01-2019-0004.
  • X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Compos Part A Appl Sci Manuf 88 (2016) 198–205. https://doi.org/10.1016/J.COMPOSITESA.2016.05.032.
  • S.R. Rajpurohit, H.K. Dave, Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer, Adv Manuf 6 (2018) 430–441. https://doi.org/10.1007/s40436-018-0237-6.
  • C.-Y. Lee, C.-Y. Liu, The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication, Addit Manuf 25 (2019) 196–203. https://doi.org/https://doi.org/10.1016/j.addma.2018.11.012.
  • L. Malagutti, G. Ronconi, M. Zanelli, F. Mollica, V. Mazzanti, A Post-processing method for improving the mechanical properties of fused-filament-fabricated 3D-printed parts, Processes 10 (2022). https://doi.org/10.3390/pr10112399.
  • B.G. Çakan, Effects of raster angle on tensile and surface roughness properties of various FDM filaments, Journal of Mechanical Science and Technology 35 (2021) 3347–3353. https://doi.org/10.1007/s12206-021-0708-8.
  • A. Temiz, The effect of build orientation on the mechanical properties of a variety of polymer AM-created triply periodic minimal surface structures, Journal of the Brazilian Society of Mechanical Sciences and Engineering 46 (2024) 121. https://doi.org/10.1007/s40430-024-04709-0.
  • ASTM, ASTM 790-17 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, (2017). https://www.astm.org/d0790-17.html.
  • Esun PLA, Pla Properties. 2024, (2024). https://www.esun3d.com/pla-product/ (accessed September 17, 2025).
  • E. Alarcon, L. Heller, Deformation infrared calorimetry for materials characterization applied to study cyclic superelasticity in NiTi wires, Mater Des 199 (2021) 109406. https://doi.org/10.1016/J.MATDES.2020.109406.
  • X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: A review and prospective, Compos B Eng 110 (2017) 442–458.
  • ESUN, ESUN PLA-CF Mechanical Properties, (2024). https://www.esun3d.com/uploads/ePLA-CF-Filament-MSDS.pdf (accessed June 16, 2025).
  • J.M. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núñez, Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Mater Des 124 (2017) 143–157. https://doi.org/10.1016/J.MATDES.2017.03.065.
  • K. Wang, G. Research, F. Lam, Quadratic rsm models of processing parameters for three-layer oriented flakeboards, (1999) 173–186.
  • İ.A. Karamanli, M.S. Gök, Y. Küçük, O. Ünal, Study of the Wear Resistance Plasma Nitrided GGG60 by Optimization of Surface Treatment Conditions Using Response Surface Methodology, International Journal of Metalcasting 19 (2025) 387–403. https://doi.org/10.1007/s40962-024-01310-y.
  • T.R. Arunprasand, P. and Nallasamy, Advancements in optimizing mechanical performance of 3d printed polymer matrix composites via microstructural refinement and processing enhancements: A comprehensive review, Mechanics of Advanced Materials and Structures (n.d.) 1–19. https://doi.org/10.1080/15376494.2024.2426776.
  • J. Mayén, A. Del Carmen Gallegos-Melgar, I. Pereyra, C.A. Poblano-Salas, M. Hernández-Hernández, J.A. Betancourt-Cantera, V.H. Mercado-Lemus, M. Del Angel Monroy, Descriptive and inferential study of hardness, fatigue life, and crack propagation on PLA 3D-printed parts, Mater Today Commun 32 (2022) 103948. https://doi.org/10.1016/J.MTCOMM.2022.103948.
  • H. Gonabadi, Y. Chen, A. Yadav, S. Bull, Investigation of the effect of raster angle, build orientation, and infill density on the elastic response of 3D printed parts using finite element microstructural modeling and homogenization techniques, The International Journal of Advanced Manufacturing Technology 118 (2022) 1485–1510.
  • M. Alagheband, M. Kosarimovahhed, Q. Zhang, S. Jung, Creep and failure of 3D-printed polymers: Impact of infill patterns and densities on shear strain and strength, Eng Fail Anal 175 (2025) 109568. https://doi.org/10.1016/J.ENGFAILANAL.2025.109568.
  • S. Turaka, V. Jagannati, B. Pappula, S. Makgato, Impact of infill density on morphology and mechanical properties of 3D printed ABS/CF-ABS composites using design of experiments, Heliyon 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e29920.
  • A. Kaptan, F. Kartal, The Effect of Fill Rate on Mechanical Properties of PLA Printed Samples, Journal of the Institute of Science and Technology 10 (2020) 1919–1927. https://doi.org/10.21597/jist.706003.
  • J.H. Porter, C. T. M., F. S. L., P.S. and Harvey, Influence of infill properties on flexural rigidity of 3D-printed structural members, Virtual Phys Prototyp 14 (2019) 148–159. https://doi.org/10.1080/17452759.2018.1537064.
  • S.W. Ahmed, G. Hussain, K. Altaf, S. Ali, M. Alkahtani, M.H. Abidi, A. Alzabidi, On the Effects of Process Parameters and Optimization of Interlaminate Bond Strength in 3D Printed ABS/CF-PLA Composite, Polymers (Basel) 12 (2020). https://doi.org/10.3390/polym12092155.
  • M. Günay, Modeling of tensile and bending strength for PLA parts produced by FDM, International Journal of 3D Printing Technologies and Digital Industry 3 (2019) 204–211.
  • S. Fouda, W. Ji, M.M. Gad, M.A. AlGhamdi, N. Rohr, Flexural strength and surface properties of 3D-printed denture base resins—effect of build angle, Layer Thickness and Aging, Materials 18 (2025).
  • Ş. Şirin, E. Aslan, G. Akincioğlu, Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance, Rapid Prototyp J 29 (2023) 157–165. https://doi.org/10.1108/RPJ-03-2022-0081.
  • Ö. Öz, F.H. Öztürk, Yazdırma açisinin 3B yazicida üretilen PLA numunenin mekanik özellikleri üzerine etkisinin deneysel ve sonlu elemanlar metodu ile incelenmesi, Politeknik Dergisi 26 (2023) 529–540. https://doi.org/10.2339/politeknik.882313.
  • E. Zurnacı, Optimization of 3D printing parameters to mechanical strength improvement of sustainable printing material using RSM, International Journal of 3D Printing Technologies and Digital Industry 7 (2023) 38–46. https://doi.org/10.46519/ij3dptdi.1231076.
  • T. Yao, J. Ye, Z. Deng, K. Zhang, Y. Ma, H. Ouyang, Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses, Compos B Eng 188 (2020) 107894.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Katmanlı Üretim
Bölüm Araştırma Makalesi
Yazarlar

İsmail Aykut Karamanlı 0000-0002-6725-2662

Vahap Neccaroğlu 0009-0003-7194-7621

Gönderilme Tarihi 20 Haziran 2025
Kabul Tarihi 14 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Karamanlı, İ. A., & Neccaroğlu, V. (2025). Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach. Manufacturing Technologies and Applications, 6(3), 272-286. https://doi.org/10.52795/mateca.1724130
AMA Karamanlı İA, Neccaroğlu V. Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach. MATECA. Aralık 2025;6(3):272-286. doi:10.52795/mateca.1724130
Chicago Karamanlı, İsmail Aykut, ve Vahap Neccaroğlu. “Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach”. Manufacturing Technologies and Applications 6, sy. 3 (Aralık 2025): 272-86. https://doi.org/10.52795/mateca.1724130.
EndNote Karamanlı İA, Neccaroğlu V (01 Aralık 2025) Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach. Manufacturing Technologies and Applications 6 3 272–286.
IEEE İ. A. Karamanlı ve V. Neccaroğlu, “Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach”, MATECA, c. 6, sy. 3, ss. 272–286, 2025, doi: 10.52795/mateca.1724130.
ISNAD Karamanlı, İsmail Aykut - Neccaroğlu, Vahap. “Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach”. Manufacturing Technologies and Applications 6/3 (Aralık2025), 272-286. https://doi.org/10.52795/mateca.1724130.
JAMA Karamanlı İA, Neccaroğlu V. Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach. MATECA. 2025;6:272–286.
MLA Karamanlı, İsmail Aykut ve Vahap Neccaroğlu. “Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach”. Manufacturing Technologies and Applications, c. 6, sy. 3, 2025, ss. 272-86, doi:10.52795/mateca.1724130.
Vancouver Karamanlı İA, Neccaroğlu V. Influence of Printing Parameters on Flexural Strength and Hardness Properties of PLA-CF Composites: An Experimental and Statistical Approach. MATECA. 2025;6(3):272-86.