Araştırma Makalesi
BibTex RIS Kaynak Göster

Uzaktan Eğitim Sürecinde Isıl Konfor Çevrimiçi Simülasyon Araçlarının Uygulamalı Bir Yüksek Lisans Dersinde Kullanımının Değerlendirilmesi

Yıl 2024, Cilt: 9 Sayı: 1, 585 - 601, 30.07.2024
https://doi.org/10.30785/mbud.1444989

Öz

Covid 19 pandemisi ile birlikte eğitim alanında uzaktan eğitime zorunlu bir geçiş yaşanmıştır. Örnek olay çalışması İç Mekan Konfor Yönetimi yüksek lisans dersinde gerçekleştirilmiştir. Doğrudan güneş ışığının kullanıcının adaptif termal konforunu nasıl etkilediğini incelemek amacıyla Yaşar Üniversitesi'nde bu ders kapsamında termal konforu değerlendirmek için çevrimiçi araçlarla simülasyonlar yapılmıştır. CBE çevrimiçi araçlarından SolarCal ve ComfTool kullanılmıştır. Bu makale, uyarlanabilir ısıl konforun yönlerini kavramak için öğrencilere verilen bir anket aracılığıyla çevrimiçi simülasyon araçlarının eğitime katkısını sorgulamayı amaçlamaktadır. Yukarıda bahsedilen çevrimiçi araçların ve formüllerin kullanımı, özellikle mimarlık ve mühendislik endüstrileri için profesyoneller için sınırlı imkanlarda çalışmaları zenginleştirebilir ve sonuçlar çıkarabilir. Anketin sonuçları, çeşitli uyarlanabilir termal konfor endekslerinin bir kerede kolayca anlaşılması için böyle bir metodolojinin benzer öğrenme ortamlarında uygulanabilirliğini sağlamak için analiz edilecektir.

Kaynakça

  • Agustí-Juan, I., Müller, F., Hack, N., Wangler, T., & Habert, G. (2017). Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. Journal of Cleaner Production, 154, 330-340.
  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2017). Temperature versus energy based approaches in the thermal assessment of buildings. Energy Procedia, 128, 46-50.
  • Anand, P., Deb, C. & Alur, R. (2017). A simplified tool for building layout design based on thermal comfort simulations. Frontiers of Architectural Research, 6(2), 218-230.
  • Arens, E., Hoyt, T., Zhou, X., Huang, L., Zhang, H. & Schiavon, S. (2015). Modeling the comfort effects of short-wave solar radiation indoors. Building and Environment, 88, 3-9.
  • ANSI/ASHRAE. (2017). Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy. ASHRAE, Atlanta. Access Address (26.03.2024): https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20 addenda/55_2017_d_20200731.pdf
  • Beizaee, A., Firth, S., Vadodaria, K. & Loveday, D. (2012). Assessing the ability of PMV model in predicting thermal sensation in naturally ventilated buildings in UK. in: Proceedings of the 7th Windsor Conference: The changing context of comfort in an unpredictable world, London, 12-15 April 2012.
  • Brager, G. S. & De Dear, R. J. (1998). Thermal adaptation in the built environment: A literature review. Energy and Buildings, 27(1), 83-96.
  • Buda, R. (2009). Learning–testing process in classroom: An empirical simulation model. Computers & Education, 52(1), 177-187.
  • Campos, N., Nogal, M., Caliz, C. & Juan, A. A. (2020). Simulation-based education involving online and on- campus models in different European universities. International Journal of Educational Technology in Higher Education, 17(1), 1-15.
  • Comite'Europe'en de Normalisation, C. E. N. 16798–1: (2019). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251. Access Address (26.03.2024): cir.nii.ac.jp
  • D’Ambrosio Alfano, F. R., Olesen, B. W., Palella, B. I. & Riccio, G. (2014). Thermal comfort: Design and assessment for energy saving. Energy and Buildings, 81, 326–336. https://doi.org/10.1016/j.enbuild.2014.06.033
  • De Dear, R. J. & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549-561.
  • Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press.
  • Holmberg, B. (1977). Distance education: A survey and bibliography. UK: Nichols Publishing Company.
  • Hodges, C., Moore, S., Lockee, B., Trust, T. & Bond, A. (2020). The difference between emergency remote teaching and online learning. Educause Review, 27, 1-12.
  • Huizenga, C., Hui, Z. & Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, 36(6), 691-699.
  • Huizenga, C., Abbaszadeh, S., Zagreus, L. & Arens, E. A. (2006). Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey. Proceedings of Healthy Buildings 2006, Lisbon, Vol. III, 393-397.
  • Humphreys, M. A. & Nicol, J. F. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and buildings, 34(6), 667-684.
  • ISO-7730. (2005). Ergonomics of the Thermal Environment — Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, third ed. ISO.
  • Kauser, A. N. (2021). Rethinking architecture pedagogy in the era of pandemics. Charrette, 1(1), 1-6.
  • Luna, A., Chong, M. & Jurburg, D. (2018). Learning strategies to optimize the assimilation of ITC2 competencies for business engineering programs. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 616-623). IEEE.
  • Nicol, J. F. & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and buildings, 34(6), 563-572.
  • Pereira, L. D., Raimondo, D., Corgnati, S. P. & da Silva, M. G. (2014). Assessment of indoor air quality and thermal comfort in Portuguese secondary classrooms: Methodology and results. Building and Environment, 81, 69-80.
  • Peters, R.S. ed., (1973). The philosophy of education (p. 238). R. S. Peters (Ed.). Oxford: Oxford University Press.
  • Puustinen, M. & Rouet, J. F. (2009). Learning with new technologies: Help seeking and information searching revisited. Computers & Education, 53(4), 1014-1019.
  • Qudrat-Ullah, H. (2010). Perceptions of the effectiveness of system dynamics-based interactive learning environments: An empirical study. Computers & Education, 55(3), 1277-1286.
  • Schiavon, S., Hoyt, T. & Piccioli, A. (2014). Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. In Building Simulation (Vol. 7, No. 4, pp. 321-334). Tsinghua University Press.
  • Su, X., Yuan, Y., Wang, Z., Liu, W., Lan, L. & Lian, Z. (2023). Human thermal comfort in non-uniform thermal environments: A review. Energy and Built Environment, 5(6), 853-862.
  • Tang, T. L. P. & Austin, M. J. (2009). Students’ perceptions of teaching technologies, application of technologies, and academic performance. Computers & Education, 53(4), 1241-1255.
  • Tartarini, F., Schiavon, S., Cheung, T. & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563.
  • ThermoWorks. (2019). Access Address (13.07.2024): https://www.thermoworks.com/emissivity-table
  • Uzun, R. & Pakdamar, F. (2023). Enriching Empirical Thermal Comfort Assessment Methods with Fuzzy Logic. Journal of Architectural Sciences and Applications, 8(2), 655-670.
  • Venticool. eu. (2022). The CBE Thermal Comfort Tool2. Access Address (26.03.2024): https://venticool.eu/the- cbe-thermal-comfort-tool/
  • Yaman, M., Nerdel, C. & Bayrhuber, H. (2008). The effects of instructional support and learner interests when learning using computer simulations. Computers & Education, 51(4), 1784-1794.

Evaluation of Thermal Comfort Online Simulation Tools Usage Through Distance Education Process in an Applied Graduate Course

Yıl 2024, Cilt: 9 Sayı: 1, 585 - 601, 30.07.2024
https://doi.org/10.30785/mbud.1444989

Öz

Through Covid 19 pandemic, education field has experienced mandatory transition to distant education. The case study held in Indoor Comfort Management postgraduate course. In order to examine how direct sunlight affects the adaptive thermal comfort of the user, simulations were made with online tools to evaluate thermal comfort within the scope this course at Yaşar University. The SolarCal and ComfTool of CBE online tools are used. This article aims to question the contribution of online simulation tools to education via a questionnaire given to students to grasp aspects of adaptive thermal comfort. The use of these aforementioned online tools and formulas can enrich studies and draw conclusions in limited facilities for professionals especially for architectural and engineering industries. The results of the survey will be analyzed to ensure the applicability of such a methodology in similar learning environments for easy understanding of the various adaptive thermal comfort indices at once.

Etik Beyan

Etik onay anket öncesinde alınmıştır.

Destekleyen Kurum

Yaşar Üniversitesi, FBE

Teşekkür

Yaşar Üniversitesi, İç Mimarlık Ana Bilim Dalı ve Fen Bilimleri Enstitüsü

Kaynakça

  • Agustí-Juan, I., Müller, F., Hack, N., Wangler, T., & Habert, G. (2017). Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. Journal of Cleaner Production, 154, 330-340.
  • Albatayneh, A., Alterman, D., Page, A., & Moghtaderi, B. (2017). Temperature versus energy based approaches in the thermal assessment of buildings. Energy Procedia, 128, 46-50.
  • Anand, P., Deb, C. & Alur, R. (2017). A simplified tool for building layout design based on thermal comfort simulations. Frontiers of Architectural Research, 6(2), 218-230.
  • Arens, E., Hoyt, T., Zhou, X., Huang, L., Zhang, H. & Schiavon, S. (2015). Modeling the comfort effects of short-wave solar radiation indoors. Building and Environment, 88, 3-9.
  • ANSI/ASHRAE. (2017). Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy. ASHRAE, Atlanta. Access Address (26.03.2024): https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20 addenda/55_2017_d_20200731.pdf
  • Beizaee, A., Firth, S., Vadodaria, K. & Loveday, D. (2012). Assessing the ability of PMV model in predicting thermal sensation in naturally ventilated buildings in UK. in: Proceedings of the 7th Windsor Conference: The changing context of comfort in an unpredictable world, London, 12-15 April 2012.
  • Brager, G. S. & De Dear, R. J. (1998). Thermal adaptation in the built environment: A literature review. Energy and Buildings, 27(1), 83-96.
  • Buda, R. (2009). Learning–testing process in classroom: An empirical simulation model. Computers & Education, 52(1), 177-187.
  • Campos, N., Nogal, M., Caliz, C. & Juan, A. A. (2020). Simulation-based education involving online and on- campus models in different European universities. International Journal of Educational Technology in Higher Education, 17(1), 1-15.
  • Comite'Europe'en de Normalisation, C. E. N. 16798–1: (2019). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251. Access Address (26.03.2024): cir.nii.ac.jp
  • D’Ambrosio Alfano, F. R., Olesen, B. W., Palella, B. I. & Riccio, G. (2014). Thermal comfort: Design and assessment for energy saving. Energy and Buildings, 81, 326–336. https://doi.org/10.1016/j.enbuild.2014.06.033
  • De Dear, R. J. & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549-561.
  • Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Copenhagen: Danish Technical Press.
  • Holmberg, B. (1977). Distance education: A survey and bibliography. UK: Nichols Publishing Company.
  • Hodges, C., Moore, S., Lockee, B., Trust, T. & Bond, A. (2020). The difference between emergency remote teaching and online learning. Educause Review, 27, 1-12.
  • Huizenga, C., Hui, Z. & Arens, E. (2001). A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, 36(6), 691-699.
  • Huizenga, C., Abbaszadeh, S., Zagreus, L. & Arens, E. A. (2006). Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey. Proceedings of Healthy Buildings 2006, Lisbon, Vol. III, 393-397.
  • Humphreys, M. A. & Nicol, J. F. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and buildings, 34(6), 667-684.
  • ISO-7730. (2005). Ergonomics of the Thermal Environment — Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, third ed. ISO.
  • Kauser, A. N. (2021). Rethinking architecture pedagogy in the era of pandemics. Charrette, 1(1), 1-6.
  • Luna, A., Chong, M. & Jurburg, D. (2018). Learning strategies to optimize the assimilation of ITC2 competencies for business engineering programs. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 616-623). IEEE.
  • Nicol, J. F. & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and buildings, 34(6), 563-572.
  • Pereira, L. D., Raimondo, D., Corgnati, S. P. & da Silva, M. G. (2014). Assessment of indoor air quality and thermal comfort in Portuguese secondary classrooms: Methodology and results. Building and Environment, 81, 69-80.
  • Peters, R.S. ed., (1973). The philosophy of education (p. 238). R. S. Peters (Ed.). Oxford: Oxford University Press.
  • Puustinen, M. & Rouet, J. F. (2009). Learning with new technologies: Help seeking and information searching revisited. Computers & Education, 53(4), 1014-1019.
  • Qudrat-Ullah, H. (2010). Perceptions of the effectiveness of system dynamics-based interactive learning environments: An empirical study. Computers & Education, 55(3), 1277-1286.
  • Schiavon, S., Hoyt, T. & Piccioli, A. (2014). Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. In Building Simulation (Vol. 7, No. 4, pp. 321-334). Tsinghua University Press.
  • Su, X., Yuan, Y., Wang, Z., Liu, W., Lan, L. & Lian, Z. (2023). Human thermal comfort in non-uniform thermal environments: A review. Energy and Built Environment, 5(6), 853-862.
  • Tang, T. L. P. & Austin, M. J. (2009). Students’ perceptions of teaching technologies, application of technologies, and academic performance. Computers & Education, 53(4), 1241-1255.
  • Tartarini, F., Schiavon, S., Cheung, T. & Hoyt, T. (2020). CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563.
  • ThermoWorks. (2019). Access Address (13.07.2024): https://www.thermoworks.com/emissivity-table
  • Uzun, R. & Pakdamar, F. (2023). Enriching Empirical Thermal Comfort Assessment Methods with Fuzzy Logic. Journal of Architectural Sciences and Applications, 8(2), 655-670.
  • Venticool. eu. (2022). The CBE Thermal Comfort Tool2. Access Address (26.03.2024): https://venticool.eu/the- cbe-thermal-comfort-tool/
  • Yaman, M., Nerdel, C. & Bayrhuber, H. (2008). The effects of instructional support and learner interests when learning using computer simulations. Computers & Education, 51(4), 1784-1794.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İç Mimarlık
Bölüm Araştırma Makaleleri
Yazarlar

Belgin Terım Cavka 0000-0003-1889-9256

Dilan Yanar 0000-0002-5141-441X

Yayımlanma Tarihi 30 Temmuz 2024
Gönderilme Tarihi 29 Şubat 2024
Kabul Tarihi 13 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 1

Kaynak Göster

APA Terım Cavka, B., & Yanar, D. (2024). Evaluation of Thermal Comfort Online Simulation Tools Usage Through Distance Education Process in an Applied Graduate Course. Journal of Architectural Sciences and Applications, 9(1), 585-601. https://doi.org/10.30785/mbud.1444989