Research Article
BibTex RIS Cite

Point Cloud Semantic Segmentation of Building Elements of Fatih Mosque, Istanbul

Year 2025, Volume: 10 Issue: 1, 30 - 54, 28.07.2025
https://doi.org/10.30785/mbud.1586902

Abstract

The architectural heritage digital model is important for high-accuracy documentation, archive security, and research opportunities. This study focuses on the autonomous documentation of the digital model of Fatih Mosque’s facade elements. Fatih Mosque literature focuses on its restoration process, historical importance, and architectural values. The literature on the documentation of the mosque with current technological methods is limited. This study applies semantic segmentation on point-cloud data to detect facade elements. Point-cloud data was produced via photogrammetry from the southwest and northwest facades. The data was labeled with masonry wall, main load-bearing wall, column, window, entrance, staircase, arch, and spouts. CANUPO classifier in CloudCompare software is used for semantic segmentation. Changing the classification parameters in CANUPO increased the accuracy rate in predicting facade elements. This study contributes to the literature by providing autonomous documentation of the Fatih Mosque’s facade and a guide for using the CANUPO classifier in digital model production.

Ethical Statement

This article was produced from a master's thesis completed in 2024 at Altinbas University, Graduate School of Science and Engineering, Department of Architecture, under the supervision of Asst. Prof. Dr. Can Uzun. The study complies with national and international research and publication ethics. Ethics committee approval was not required for this research.

Thanks

This article was produced from a master's thesis completed in 2024 at Altinbas University, Graduate School of Science and Engineering, Department of Architecture, under the supervision of Asst. Prof. Dr. Can Uzun. The study complies with national and international research and publication ethics. Ethics committee approval was not required for this research.

References

  • Agirbas, A., Yildiz, G., & Sahin, M. (2022). Interrelation between grid systems and star polygons of muqarnas ground projection plans. Heritage Science, 10(1), 12. Access Address (10.09.2024): https://heritagesciencejournal.springeropen.com/articles/10.1186/s40 494-022-00647-z
  • Agisoft. (2019). Agisoft Metashape. Access Address (28.06.2024): https://www.agisoft.com/metashape/
  • Akyuz, T., Akyuz, S., & Gulec, A. (2015). Elemental and spectroscopic characterization of plasters from Fatih Mosque-Istanbul (Turkey) by combined micro-Raman, FTIR and EDXRF techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 744-750. Access Address (10.09.2024): https://www.sciencedirect.com/science/article/pii/S1386142515006034
  • Baik, A. (2017). From point cloud to jeddah heritage BIM nasif historical house–case study. Digital Applications İn Archaeology And Cultural Heritage, 4. Access Address (22.10.2024): https://www.sciencedirect.com/science/article/pii/S2212054817300073
  • Bal, İ. E., Gülay, F. G., Vatan, M., & Smyrou, E. (2015). Historical earthquake damages to domed structures in Istanbul. Advances in Civil and Industrial Engineering, 649-673. doi:10.4018/978-1-4666-8286-3.ch022. Access Address (02.11.2024): https://www.researchgate.net/publication/286932740_Historical_Earthquake_Damages_to_Domed_Structur es_in_Istanbul
  • Barrile, V., & Fotia, A. (2022). A proposal of a 3D segmentation tool for HBIM management. Applied Geomatics, 14(Suppl 1), 197–209.
  • Berilgen, M. M. (2007). Evaluation of local site effects on earthquake damages of Fatih Mosque. Engineering Geology, 91(2–4), 240–253.
  • Beyen, K. (2008). Structural identification for post-earthquake safety analysis of the fat I ̇ H mosque after the 17 August 1999 Kocaeli earthquake. Engineering Structures, 30(8), 2165-2184. Access Address (22.10.2024): https://www.sciencedirect.com /science/article/ pii/S014102960700315X
  • Bianchini, C. (2020). A methodological approach for the study of domes. Nexus Network Journal, 22(4), 983-1013. Access Address (22.10.2024): https://www.researchgate.net/publication/ 346056413_A_Methodological_Approach_for_the_Study_of_Domes
  • Brodu, N., & Lague, D. (2012). 3D terrestrial LiDAR data classification of complex natural scenes using a multi- scale dimensionality criterion: Applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 121-134. Access Address (05.11.2024): https://www.scien cedirect.com/scienc e/article/ pii/S0924271 612000330
  • Champion, E., & Rahaman, H. (2019). 3D digital heritage models as sustainable scholarly resources. Sustainability, 11(8), 2425. Access Address (05.09.2024): https://www.mdpi.com/2071-1050/11/8/2425
  • Ceylan, O. & Keleş Ocakcan, T., (2013). "Fatih Camii 2007-2012 Restorasyonu Uygulamaları." Restorasyon Yıllığı Dergisi, 7 (2013): 43-63.
  • Clini, P., Mariotti, C., Angeloni, R., & Muñoz Cádiz, J. (2024). Architectural heritage digital representations for conservation strategies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W4-2024, 111-118. doi:10.5194/isprs-archives-xlviii-2-w4-2024-111-2024. Access Address (03.04.2024): https://isprs-archives.copernicus.org/articles/XLVIII-2-W4-2024/111/2024/
  • Costantino, D., Pepe, M., & Restuccia, A. (2021). Scan-to-HBIM for conservation and preservation of cultural heritage building: The case study of San Nicola in Montedoro church (Italy). Applied Geomatics, 15(3), 607-621. Access Address (03.04.2024): https://link.springer.com/article/10.1007/s12518-021-00359-2
  • Croce, V., Caroti, G., De Luca, L., Jacquot, K., Piemonte, A., & Véron, P. (2021). From the semantic point cloud to heritage-building information modeling: A semiautomatic approach exploiting machine learning. Remote Sensing, 13(3), 461. Access Address (04.04.2024): https://www.mdpi.com/2072-4292/13/3/461
  • Ergin, A. İ. D. (2023). Digital Approach in Conservation of Heritage: 3D Virtual Reconstruction Applications in Ancient Cities. Journal of Architectural Sciences and Applications, 8(2), 969-987.
  • Eyice, S. (1995). Fatih Camii ve Külliyesi. TDV İslam Ansiklopedisi. TDV Islamic Research Center. Access Address (26.02.2025): https://islamansiklopedisi.org.tr/fatih-camii-ve-kulliyesi
  • Galantucci, R. A., & Fatiguso, F. (2019). Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface analysis. Advanced Engineering Research, 18(3), 101-115. Access Address (10.09.2024): https://www.sciencedirect.com / science/article/abs/pii/S1296207418302528
  • Grilli, E., & Remondino, F. (2019). Classification of 3D digital heritage. Remote Sensing, 11(7), 847.
  • Karakus, F. (2020). Analysis of the Methods Used in Documentation of Historical Structures with Examples. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 11, 69–76. Access Address
  • (25.02.2025): https://dergipark.org.tr/en/down load/article-file/1434548
  • Kan, T., Buyuksalih, G., Ozkan, G. E., & Baskaraca, P. (2019). Rapid 3d Digitalization Of The Cultural Heritage: A Case Study On Istanbul Suleymaniye Social Complex (Kulliye). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 645–652.
  • Korumaz, G. A., & Dülgerler, O. N. (2011). Kültürel mirasın belgelenmesinde dijital yaklaşımlar. S.Ü. Mühendislik-Mimarlık Fakültesi Dergisi, 26(3), 67-83. Access Address (25.02.2025): https://dergipark.org.tr/tr/download/article-file/215784
  • Kuban, D. (2000). Tarihi çevre koruma ve onarımın mimarlık boyutu: Kuram ve uygulama. İstanbul: Yapı Endüstri Merkezi.
  • Kunter, H. B., & Ülgen, A. S. (1939). Fatih camii ve Bizans sarnıcı. Cumhuriyet Matbaası.
  • Macher, H., Landes, T., & Grussenmeyer, P. (2017). From point clouds to building information models: 3D semi- automatic reconstruction of indoors of existing buildings. Applied Sciences, 7(10), 1030.
  • Maiwald, F., Bruschke, J., Lehmann, C., & Niebling, F. (2019). A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies, and VR/AR. Virtual Archaeology Review, 10(21), 1–13.
  • Martinelli, L., Calcerano, F., Adinolfi, F., Chianetta, D., & Gigliarelli, E. (2023). Open HBIM-IoT monitoring platform for the management of historical sites and museums: An application to the Bourbon Royal Site of Carditello. International Journal of Architectural Heritage, 1–18.
  • Moyano, J., León, J., Nieto-Julián, J. E., & Bruno, S. (2021). Semantic interpretation of architectural and archaeological geometries: Point cloud segmentation for HBIM parameterisation. Automation in Construction, 130, 103856.
  • Nespeca, R., Mariotti, C., Petetta, L., & Mandriota, A. (2024). Point cloud segmentation in heritage preservation: Advanced digital process for historical houses. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W4-2024, 325–332. doi:10.5194/isprs-archives-xlviii-2-w4- 2024-325-2024.
  • Nurunnabi, A., Belton, D., & West, G. (2012). Robust segmentation for large volumes of laser scanning three- dimensional point cloud data. IEEE Transactions on Geoscience and Remote Sensing, 50(9), 3347–3355. doi: 10.1109/TGRS.2012.2181912, Access Address (18.09.2024): https://ieeexplore.ieee.org/abstract/document/6411672
  • Penjor, T., Banihashemi, S., Hajirasouli, A., & Golzad, H. (2024). Heritage Building Information Modeling (HBIM) for heritage conservation: Framework of challenges, gaps, and existing limitations of HBIM. Digital Applications in Archaeology and Cultural Heritage, 35, e00366.
  • Pierdicca, R., Paolanti, M., Matrone, F., Martini, M., Morbidoni, C., Malinverni, E. S., Frontoni, E., & Lingua, A. M. (2020). Point cloud semantic segmentation using a deep learning framework for cultural heritage. Remote Sensing, 12(6), 1005. doi: 10.3390/rs12061005. Access Address (12.12.2024): https://www.mdpi.com/2072-4292/12/6/1005.
  • Pocobelli, D. P., Boehm, J., Bryan, P., Still, J., & Grau-Bové, J. (2018). BIM for heritage science: A review. Heritage Science, 6(1).
  • Psomadaki, O. I., Dimoulas, C. A., Kalliris, G. M., & Paschalidis, G. (2019). Digital storytelling and audience engagement in cultural heritage management: A collaborative model based on the Digital City of Thessaloniki. Journal of Cultural Heritage, 36, 12–22.
  • Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1(1), 652-660. doi: 10.1109/CVPR.2017.69. Access Address (12.12.2019): https://openaccess.thecvf.com/content_cvpr_2017 /html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html.
  • Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the 30th Neural Information Processing Systems (NeurIPS), 30, 5096-5104. Access Address (12.12.2019): https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.
  • Rabbani, T., van den Heuvel, F. A., & Vosselman, G. (2006). Segmentation of point clouds using smoothness constraint. ISPRS Journal of Photogrammetry and Remote Sensing, Volume(Issue), pages. doi: d2daca8e0e381d2124455057bf3f3e94e0323e62, Access Address (20.07.2024): https://citeseerx.ist.psu.edu/document?repid=rep1&type= pdf&doi= d2daca8e0e381d2124455057bf3f3e94e0323e62
  • Rocha, G., Mateus, L., Fernández, J., & Ferreira, V. (2020). A scan-to-BIM methodology applied to heritage buildings. Heritage, 3(1), 47-67.
  • Shabani, A., Skamantzari, M., Tapinaki, S., Georgopoulos, A., Plevris, V., & Kioumarsi, M. (2022). 3D simulation models for developing digital twins of heritage structures: Challenges and strategies. Procedia Structural Integrity, 37, 314–320.
  • Solla, M., Gonçalves, L. M., Gonçalves, G., Francisco, C., Puente, I., Providência, P., & Rodrigues, H. (2020). A building information modeling approach to integrate geomatic data for the documentation and preservation of cultural heritage. Remote Sensing, 12(24), 4028.
  • Stober, D., Žarnić, R., Penava, D., Turkalj Podmanicki, M., & Virgej-Đurašević, R. (2018). Application of HBIM as a research tool for historical building assessment. Civil Engineering Journal, 4(7), 1565.
  • Stouffs, R., & Tunçer, B. (2015). Typological descriptions as generative guides for historical architecture. Nexus Network Journal, 17(3), 785–805. https://doi.org/10.1007/s00004-015-0260-x.
  • Štroner, M., Urban, R., Lidmila, M., Kolář, V., & Křemen, T. (2021). Vegetation filtering of a steep rugged terrain: The performance of standard algorithms and a newly proposed workflow on an example of a railway ledge. Remote Sensing, 13(15), 3050.
  • Themistocleous, K., Evagorou, E., Mettas, C., & Hadjimitsis, D. G. (2022). The use of digital twin models to document cultural heritage monuments. Earth Resources and Environmental Remote Sensing/GIS Applications XIII, 13.
  • Vatan, M. (2018). Lessons learned from earthquake damage to masonry domed monuments in Istanbul. Z. Ahunbay, D. Mazlum, & Z. Eres (Ed.), Conservation of cultural heritage in Turkey (67–84). ICOMOS Turkey.
  • Xie, Y., Tian, J., & Zhu, X. X. (2020). Linking points with labels in 3D: A review of point cloud semantic segmentation. IEEE Geoscience and Remote Sensing Magazine, 8(4), 38–59.
  • Yang, S., Hou, M., & Li, S. (2023). Three-dimensional point cloud semantic segmentation for cultural heritage: A comprehensive review. Remote Sensing, 15(3), 548.
  • Yastıklı, N., & Alkıs, Z. (2003). Documentation of cultural heritage by using digital close range photogrammetry. In Proceedings of XIX th International Symposium CIPA, New Perspective to Save Cultural Heritage.

İstanbul Fatih Camii'nin Nokta Bulutu Semantik Segmentasyonu

Year 2025, Volume: 10 Issue: 1, 30 - 54, 28.07.2025
https://doi.org/10.30785/mbud.1586902

Abstract

Mimari mirasın sayısal modellerinin üretilmesi, yüksek doğrulukta belgeleme, arşiv güvenliği, güncel yöntemlerle araştırma olanakları bakımından önemlidir. Bu çalışma Fatih Cami'nin cephe elemanlarının sayısal modellerinin otonom belgelenmesi sürecine odaklanmaktadır. Fatih Cami literatürü, caminin restorasyonu, tarihi önemi ve mimari değerleri konularını içermektedir. Caminin güncel teknolojik yöntemlerle belgelenmesi konusundaki literatür oldukça kısıtlıdır. Bu çalışmada Fatih Cami yapı elemanlarının otonom tespiti için nokta bulutu verisi ile anlamsal segmentasyon uygulanmıştır. Fatih Cami nokta bulutu verisi, caminin güneybatı ve kuzeybatı cephelerinden fotogrametri tekniği ile üretilmiştir. Nokta bulutu verisi, yığma duvar, ana taşıyıcı duvar, sütun, pencere, giriş kapısı, merdiven, kemer ve yağmur suyu oluğu yapı elemanları ile etiketlenmiştir. Anlamsal segmentasyon için CloudCompare yazılımındaki CANUPO sınıflandırıcı aracı kullanılmıştır. CANUPO ile sınıflandırma parametreleri düzenlenerek, farklı yapı elemanlarının tahminindeki doğruluk oranı arttırılabilmiştir. Bu çalışma hem Fatih Cami’nin cephe elemanlarının otonom belgelenmesi ile, hem de sayısal model üretiminde CANUPO sınıflandırıcı kullanımı için bir rehber niteliği oluşturarak literatüre katkı sağlamaktadır.

Ethical Statement

Bu çalışma etik kurul izni veya herhangi bir özel izin gerektirmemektedir.

References

  • Agirbas, A., Yildiz, G., & Sahin, M. (2022). Interrelation between grid systems and star polygons of muqarnas ground projection plans. Heritage Science, 10(1), 12. Access Address (10.09.2024): https://heritagesciencejournal.springeropen.com/articles/10.1186/s40 494-022-00647-z
  • Agisoft. (2019). Agisoft Metashape. Access Address (28.06.2024): https://www.agisoft.com/metashape/
  • Akyuz, T., Akyuz, S., & Gulec, A. (2015). Elemental and spectroscopic characterization of plasters from Fatih Mosque-Istanbul (Turkey) by combined micro-Raman, FTIR and EDXRF techniques. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 744-750. Access Address (10.09.2024): https://www.sciencedirect.com/science/article/pii/S1386142515006034
  • Baik, A. (2017). From point cloud to jeddah heritage BIM nasif historical house–case study. Digital Applications İn Archaeology And Cultural Heritage, 4. Access Address (22.10.2024): https://www.sciencedirect.com/science/article/pii/S2212054817300073
  • Bal, İ. E., Gülay, F. G., Vatan, M., & Smyrou, E. (2015). Historical earthquake damages to domed structures in Istanbul. Advances in Civil and Industrial Engineering, 649-673. doi:10.4018/978-1-4666-8286-3.ch022. Access Address (02.11.2024): https://www.researchgate.net/publication/286932740_Historical_Earthquake_Damages_to_Domed_Structur es_in_Istanbul
  • Barrile, V., & Fotia, A. (2022). A proposal of a 3D segmentation tool for HBIM management. Applied Geomatics, 14(Suppl 1), 197–209.
  • Berilgen, M. M. (2007). Evaluation of local site effects on earthquake damages of Fatih Mosque. Engineering Geology, 91(2–4), 240–253.
  • Beyen, K. (2008). Structural identification for post-earthquake safety analysis of the fat I ̇ H mosque after the 17 August 1999 Kocaeli earthquake. Engineering Structures, 30(8), 2165-2184. Access Address (22.10.2024): https://www.sciencedirect.com /science/article/ pii/S014102960700315X
  • Bianchini, C. (2020). A methodological approach for the study of domes. Nexus Network Journal, 22(4), 983-1013. Access Address (22.10.2024): https://www.researchgate.net/publication/ 346056413_A_Methodological_Approach_for_the_Study_of_Domes
  • Brodu, N., & Lague, D. (2012). 3D terrestrial LiDAR data classification of complex natural scenes using a multi- scale dimensionality criterion: Applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 121-134. Access Address (05.11.2024): https://www.scien cedirect.com/scienc e/article/ pii/S0924271 612000330
  • Champion, E., & Rahaman, H. (2019). 3D digital heritage models as sustainable scholarly resources. Sustainability, 11(8), 2425. Access Address (05.09.2024): https://www.mdpi.com/2071-1050/11/8/2425
  • Ceylan, O. & Keleş Ocakcan, T., (2013). "Fatih Camii 2007-2012 Restorasyonu Uygulamaları." Restorasyon Yıllığı Dergisi, 7 (2013): 43-63.
  • Clini, P., Mariotti, C., Angeloni, R., & Muñoz Cádiz, J. (2024). Architectural heritage digital representations for conservation strategies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W4-2024, 111-118. doi:10.5194/isprs-archives-xlviii-2-w4-2024-111-2024. Access Address (03.04.2024): https://isprs-archives.copernicus.org/articles/XLVIII-2-W4-2024/111/2024/
  • Costantino, D., Pepe, M., & Restuccia, A. (2021). Scan-to-HBIM for conservation and preservation of cultural heritage building: The case study of San Nicola in Montedoro church (Italy). Applied Geomatics, 15(3), 607-621. Access Address (03.04.2024): https://link.springer.com/article/10.1007/s12518-021-00359-2
  • Croce, V., Caroti, G., De Luca, L., Jacquot, K., Piemonte, A., & Véron, P. (2021). From the semantic point cloud to heritage-building information modeling: A semiautomatic approach exploiting machine learning. Remote Sensing, 13(3), 461. Access Address (04.04.2024): https://www.mdpi.com/2072-4292/13/3/461
  • Ergin, A. İ. D. (2023). Digital Approach in Conservation of Heritage: 3D Virtual Reconstruction Applications in Ancient Cities. Journal of Architectural Sciences and Applications, 8(2), 969-987.
  • Eyice, S. (1995). Fatih Camii ve Külliyesi. TDV İslam Ansiklopedisi. TDV Islamic Research Center. Access Address (26.02.2025): https://islamansiklopedisi.org.tr/fatih-camii-ve-kulliyesi
  • Galantucci, R. A., & Fatiguso, F. (2019). Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface analysis. Advanced Engineering Research, 18(3), 101-115. Access Address (10.09.2024): https://www.sciencedirect.com / science/article/abs/pii/S1296207418302528
  • Grilli, E., & Remondino, F. (2019). Classification of 3D digital heritage. Remote Sensing, 11(7), 847.
  • Karakus, F. (2020). Analysis of the Methods Used in Documentation of Historical Structures with Examples. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 11, 69–76. Access Address
  • (25.02.2025): https://dergipark.org.tr/en/down load/article-file/1434548
  • Kan, T., Buyuksalih, G., Ozkan, G. E., & Baskaraca, P. (2019). Rapid 3d Digitalization Of The Cultural Heritage: A Case Study On Istanbul Suleymaniye Social Complex (Kulliye). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, 645–652.
  • Korumaz, G. A., & Dülgerler, O. N. (2011). Kültürel mirasın belgelenmesinde dijital yaklaşımlar. S.Ü. Mühendislik-Mimarlık Fakültesi Dergisi, 26(3), 67-83. Access Address (25.02.2025): https://dergipark.org.tr/tr/download/article-file/215784
  • Kuban, D. (2000). Tarihi çevre koruma ve onarımın mimarlık boyutu: Kuram ve uygulama. İstanbul: Yapı Endüstri Merkezi.
  • Kunter, H. B., & Ülgen, A. S. (1939). Fatih camii ve Bizans sarnıcı. Cumhuriyet Matbaası.
  • Macher, H., Landes, T., & Grussenmeyer, P. (2017). From point clouds to building information models: 3D semi- automatic reconstruction of indoors of existing buildings. Applied Sciences, 7(10), 1030.
  • Maiwald, F., Bruschke, J., Lehmann, C., & Niebling, F. (2019). A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies, and VR/AR. Virtual Archaeology Review, 10(21), 1–13.
  • Martinelli, L., Calcerano, F., Adinolfi, F., Chianetta, D., & Gigliarelli, E. (2023). Open HBIM-IoT monitoring platform for the management of historical sites and museums: An application to the Bourbon Royal Site of Carditello. International Journal of Architectural Heritage, 1–18.
  • Moyano, J., León, J., Nieto-Julián, J. E., & Bruno, S. (2021). Semantic interpretation of architectural and archaeological geometries: Point cloud segmentation for HBIM parameterisation. Automation in Construction, 130, 103856.
  • Nespeca, R., Mariotti, C., Petetta, L., & Mandriota, A. (2024). Point cloud segmentation in heritage preservation: Advanced digital process for historical houses. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W4-2024, 325–332. doi:10.5194/isprs-archives-xlviii-2-w4- 2024-325-2024.
  • Nurunnabi, A., Belton, D., & West, G. (2012). Robust segmentation for large volumes of laser scanning three- dimensional point cloud data. IEEE Transactions on Geoscience and Remote Sensing, 50(9), 3347–3355. doi: 10.1109/TGRS.2012.2181912, Access Address (18.09.2024): https://ieeexplore.ieee.org/abstract/document/6411672
  • Penjor, T., Banihashemi, S., Hajirasouli, A., & Golzad, H. (2024). Heritage Building Information Modeling (HBIM) for heritage conservation: Framework of challenges, gaps, and existing limitations of HBIM. Digital Applications in Archaeology and Cultural Heritage, 35, e00366.
  • Pierdicca, R., Paolanti, M., Matrone, F., Martini, M., Morbidoni, C., Malinverni, E. S., Frontoni, E., & Lingua, A. M. (2020). Point cloud semantic segmentation using a deep learning framework for cultural heritage. Remote Sensing, 12(6), 1005. doi: 10.3390/rs12061005. Access Address (12.12.2024): https://www.mdpi.com/2072-4292/12/6/1005.
  • Pocobelli, D. P., Boehm, J., Bryan, P., Still, J., & Grau-Bové, J. (2018). BIM for heritage science: A review. Heritage Science, 6(1).
  • Psomadaki, O. I., Dimoulas, C. A., Kalliris, G. M., & Paschalidis, G. (2019). Digital storytelling and audience engagement in cultural heritage management: A collaborative model based on the Digital City of Thessaloniki. Journal of Cultural Heritage, 36, 12–22.
  • Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1(1), 652-660. doi: 10.1109/CVPR.2017.69. Access Address (12.12.2019): https://openaccess.thecvf.com/content_cvpr_2017 /html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html.
  • Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the 30th Neural Information Processing Systems (NeurIPS), 30, 5096-5104. Access Address (12.12.2019): https://proceedings.neurips.cc/paper_files/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.
  • Rabbani, T., van den Heuvel, F. A., & Vosselman, G. (2006). Segmentation of point clouds using smoothness constraint. ISPRS Journal of Photogrammetry and Remote Sensing, Volume(Issue), pages. doi: d2daca8e0e381d2124455057bf3f3e94e0323e62, Access Address (20.07.2024): https://citeseerx.ist.psu.edu/document?repid=rep1&type= pdf&doi= d2daca8e0e381d2124455057bf3f3e94e0323e62
  • Rocha, G., Mateus, L., Fernández, J., & Ferreira, V. (2020). A scan-to-BIM methodology applied to heritage buildings. Heritage, 3(1), 47-67.
  • Shabani, A., Skamantzari, M., Tapinaki, S., Georgopoulos, A., Plevris, V., & Kioumarsi, M. (2022). 3D simulation models for developing digital twins of heritage structures: Challenges and strategies. Procedia Structural Integrity, 37, 314–320.
  • Solla, M., Gonçalves, L. M., Gonçalves, G., Francisco, C., Puente, I., Providência, P., & Rodrigues, H. (2020). A building information modeling approach to integrate geomatic data for the documentation and preservation of cultural heritage. Remote Sensing, 12(24), 4028.
  • Stober, D., Žarnić, R., Penava, D., Turkalj Podmanicki, M., & Virgej-Đurašević, R. (2018). Application of HBIM as a research tool for historical building assessment. Civil Engineering Journal, 4(7), 1565.
  • Stouffs, R., & Tunçer, B. (2015). Typological descriptions as generative guides for historical architecture. Nexus Network Journal, 17(3), 785–805. https://doi.org/10.1007/s00004-015-0260-x.
  • Štroner, M., Urban, R., Lidmila, M., Kolář, V., & Křemen, T. (2021). Vegetation filtering of a steep rugged terrain: The performance of standard algorithms and a newly proposed workflow on an example of a railway ledge. Remote Sensing, 13(15), 3050.
  • Themistocleous, K., Evagorou, E., Mettas, C., & Hadjimitsis, D. G. (2022). The use of digital twin models to document cultural heritage monuments. Earth Resources and Environmental Remote Sensing/GIS Applications XIII, 13.
  • Vatan, M. (2018). Lessons learned from earthquake damage to masonry domed monuments in Istanbul. Z. Ahunbay, D. Mazlum, & Z. Eres (Ed.), Conservation of cultural heritage in Turkey (67–84). ICOMOS Turkey.
  • Xie, Y., Tian, J., & Zhu, X. X. (2020). Linking points with labels in 3D: A review of point cloud semantic segmentation. IEEE Geoscience and Remote Sensing Magazine, 8(4), 38–59.
  • Yang, S., Hou, M., & Li, S. (2023). Three-dimensional point cloud semantic segmentation for cultural heritage: A comprehensive review. Remote Sensing, 15(3), 548.
  • Yastıklı, N., & Alkıs, Z. (2003). Documentation of cultural heritage by using digital close range photogrammetry. In Proceedings of XIX th International Symposium CIPA, New Perspective to Save Cultural Heritage.
There are 49 citations in total.

Details

Primary Language English
Subjects Architectural Heritage and Conservation
Journal Section Research Articles
Authors

Khwlah Kasem Agha 0009-0002-5880-299X

Can Uzun 0000-0002-4373-9732

Publication Date July 28, 2025
Submission Date November 17, 2024
Acceptance Date April 18, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Kasem Agha, K., & Uzun, C. (2025). Point Cloud Semantic Segmentation of Building Elements of Fatih Mosque, Istanbul. Journal of Architectural Sciences and Applications, 10(1), 30-54. https://doi.org/10.30785/mbud.1586902