Derleme
BibTex RIS Kaynak Göster

Hücre İskeleti Yapıları ve Hastalıklarla Etkileşimleri

Yıl 2019, Cilt: 3 Sayı: 2, 197 - 202, 23.08.2019
https://doi.org/10.30565/medalanya.528070

Öz

Araştırmacılar, ileri teknolojiye sahip farklı hastalıklar için farklı temeller bildirmişlerdir. Bu arada, son zamanlarda temel hücresel mekanizmaların etkileşimlerini netleştirmek için birçok araştırma yapılmıştır. Bu nedenle, hücre iskeleti araştırmaları bu eğilim nedeniyle önem kazanmaktadır. Hücre iskeleti yapıları, hücre çekirdeği, sitoplazma ve ayrıca hücre dışı matriks arasındaki bağlantılardan sorumludur, böylece hücresel moleküller ve sinyalizasyon iletimi arasında bir iletişim bağlantısı oluşturur. Hücre iskeleti, üç çeşit protein filamanından oluşur: aktin filamentleri, ara filamentler ve mikrotübüller. Bu makalede, bu yapıların niteliği kısaca özetlenmiştir ve hücre iskeleti bileşenleri ile yaygın hastalıklar arasındaki ilişkiyi bildiren literatür taraması sunulmuştur. 

Kaynakça

  • 1. Mandadapu KK, Govindjee S, Mofrad MR. On the cytoskeleton and soft glassy rheology. J Biomech. 2008;41(7):1467-78. doi: 10.1016/j.jbiomech.2008.02.014.
  • 2. Mofrad MR. Rheology of the Cytoskeleton. Annual Review of Fluid Mechanics 2009;41: 433-453
  • 3. Ramaekers FC, Bosman FT. The cytoskeleton and disease. J Pathol. 2004;204(4):351-4.
  • 4. Vindin H, Gunning P. Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil. 2013;34(3-4):261-74. doi: 10.1007/s10974-013-9355-8.
  • 5. Lodish A, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. (2000) The actin cytoskeleton. Section 18:1, Molecular Cell Biology, 4th Edition. W.H. Freeman and Company, New York
  • 6. Huber, F., J. Schnauß, Rönicke S, Rauch P, Müler K, Fütterer C, Käs J. "Emergent complexity of the cytoskeleton: from single filaments to tissue." Advances in Physics 2013; 62(1): 1-112
  • 7. Sept, J. Xu, T.D. Pollard, and J.A. McCammon, Biophys. J. 1999; 77: 2911–2919.
  • 8. Haarer B, Mi-Mi L, Cho J, Cortese M, Viggiano S, Burke D, Amberg D.Actin dosage lethality screening in yeast mediated by selective ploidy ablation reveals links to urmylation/wobble codon recognition and chromosome stability. G3 (Bethesda). 2013;3(3):553-61. doi: 10.1534/g3.113.005579.
  • 9. Higgs HN. Formin proteins: a domain-based approach. Trends Biochem Sci. 2005;30(6):342-53.
  • 10. Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science. 2011;331(6013):80-3.
  • 11. Goode BL, Eck MJ. Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem. 2007;76:593-627.
  • 12. Eira J, Silva CS1, Sousa MM2, Liz MA3. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol. 2016 Jun;141:61-82. doi: 10.1016/j.pneurobio.2016.04.00
  • 13. Penzes P, Vanleeuwen JE. Impaired regulation of synaptic actin cytoskeleton in Alzheimer's disease. Brain Res Rev. 2011;67(1-2):184-92. doi: 10.1016/j.brainresrev.2011.01.003.
  • 14. Munsie LN, Truant R. The role of the cofilin-actin rod stress response in neurodegenerative diseases uncovers potential new drug targets. Bioarchitecture. 2012;2(6):204-8. doi: 10.4161/bioa.22549.
  • 15. Nowak K, McCullagh K, Poon E, Davies KE. Muscular dystrophies related to the cytoskeleton/nuclear envelope. Novartis Found Symp. 2005;264:98-111; discussion 112-7, 227-30.
  • 16. Clarkson E, Costa CF, Machesky LM. Congenital myopathies: diseases of the actin cytoskeleton. J Pathol. 2004;204(4):407-17.
  • 17. Li S, Duance VC, Blain EJ. F-actin cytoskeletal organization in intervertebral disc health and disease. Biochem Soc Trans. 2007;35(Pt 4):683-5.
  • 18. Kumagai T, Mouawad F, Takano T. Pathogenesis of common glomerular diseases role of the podocyte cytoskeleton. Cell Health and Cytoskeleton 2012:4 103–118
  • 19. Kanaan Z, Qadan M, Eichenberger MR, Galandiuk S. The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer. Genet Test Mol Biomarkers. 2010;14(3):347-53. doi: 10.1089/gtmb.2009.0197.
  • 20. Sarantitis I, Papanastasopoulos P, Manousi M, Baikoussis NG, Apostolakis E. The cytoskeleton of the cardiac muscle cell. Hellenic J Cardiol. 2012;53(5):367-79.
  • 21. Ono A, Westein E, Hsiao S, Nesbitt WS, Hamilton JR, Schoenwaelder SM, Jackson SP. Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood. 2008;112(1):90-9. doi: 10.1182/blood-2007-12-127001.
  • 22. Cooper GM, Hausman RE. (2000) The Cell, A molecular approach, 3rd edition, ASM press, Washington D.C. p 462-463
  • 23. Marx A, Pless J, Mandelkow EM, Mandelkow E. On The Rigidity Of The Cytoskeleton: Are MAPs crosslinkers or spacers of microtubules? Cellular and Molecular Biology 2000; 46 (5), 949-965
  • 24. Lodish A, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. (2000) Microtubule Dynamics and Associated Proteins. Section 19:2, Molecular Cell Biology, 4th Edition. W.H. Freeman and Company, New York
  • 25. Baird FJ, Bennett CL. Microtubule defects & Neurodegeneration. J Genet Syndr Gene Ther. 2013;4:203.
  • 26. Zhao M, Ko SY, Liu JH, Chen D, Zhang J, Wang B, Harris SE, Oyajobi BO, Mundy GR. Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2. Mol Cell Biol. 2009;29(5):1291-305. doi: 10.1128/MCB.01566-08.
  • 27. Zou W, Greenblatt MB, Brady N, Lotinun S, Zhai B, de Rivera H, Singh A, Sun J, Gygi SP, Baron R, Glimcher LH, Jones DC. The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2. J Exp Med. 2013;210(9):1793-806. doi: 10.1084/jem.20111790.
  • 28. Spencer JA, Eliazer S, Ilaria RL Jr, Richardson JA, Olson EN. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol. 2000;150(4):771-84.
  • 29. Cooper G 4th . Proliferating cardiac microtubules. Am J Physiol Heart Circ Physiol. 2009;297(2):H510-1. doi: 10.1152/ajpheart.00517.2009.
  • 30. Saji K, Fukumoto Y, Suzuki J, Fukui S, Nawata J, Shimokawa H. Colchicine, a microtubule depolymerizing agent, inhibits myocardial apoptosis in rats. Tohoku J Exp Med. 2007;213(2):139-48.

Structures of Cytoskeleton and Disease Interactions

Yıl 2019, Cilt: 3 Sayı: 2, 197 - 202, 23.08.2019
https://doi.org/10.30565/medalanya.528070

Öz

Researchers reported different basics for different kind of diseases with advanced technology. Meanwhile, investigators are focused on to clarify the interactions of basic cellular mechanisms recently. Therefore, cytoskeletal researches are gain importance due to this tendency. The cytoskeletal structures are responsible for interconnects between cell nucleus, cytoplasm and also extracellular matrix, whereby it creates a communication link between cellular molecules and signalization transport. The cytoskeleton is constructed from three kinds of protein filaments as: actin filaments, intermediate filaments, and microtubules. The nature of these structures is briefly outlined and the literature review that is reporting the relationship between cytoskeleton components and common disorders is presented in this paper. 

Kaynakça

  • 1. Mandadapu KK, Govindjee S, Mofrad MR. On the cytoskeleton and soft glassy rheology. J Biomech. 2008;41(7):1467-78. doi: 10.1016/j.jbiomech.2008.02.014.
  • 2. Mofrad MR. Rheology of the Cytoskeleton. Annual Review of Fluid Mechanics 2009;41: 433-453
  • 3. Ramaekers FC, Bosman FT. The cytoskeleton and disease. J Pathol. 2004;204(4):351-4.
  • 4. Vindin H, Gunning P. Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil. 2013;34(3-4):261-74. doi: 10.1007/s10974-013-9355-8.
  • 5. Lodish A, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. (2000) The actin cytoskeleton. Section 18:1, Molecular Cell Biology, 4th Edition. W.H. Freeman and Company, New York
  • 6. Huber, F., J. Schnauß, Rönicke S, Rauch P, Müler K, Fütterer C, Käs J. "Emergent complexity of the cytoskeleton: from single filaments to tissue." Advances in Physics 2013; 62(1): 1-112
  • 7. Sept, J. Xu, T.D. Pollard, and J.A. McCammon, Biophys. J. 1999; 77: 2911–2919.
  • 8. Haarer B, Mi-Mi L, Cho J, Cortese M, Viggiano S, Burke D, Amberg D.Actin dosage lethality screening in yeast mediated by selective ploidy ablation reveals links to urmylation/wobble codon recognition and chromosome stability. G3 (Bethesda). 2013;3(3):553-61. doi: 10.1534/g3.113.005579.
  • 9. Higgs HN. Formin proteins: a domain-based approach. Trends Biochem Sci. 2005;30(6):342-53.
  • 10. Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science. 2011;331(6013):80-3.
  • 11. Goode BL, Eck MJ. Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem. 2007;76:593-627.
  • 12. Eira J, Silva CS1, Sousa MM2, Liz MA3. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Prog Neurobiol. 2016 Jun;141:61-82. doi: 10.1016/j.pneurobio.2016.04.00
  • 13. Penzes P, Vanleeuwen JE. Impaired regulation of synaptic actin cytoskeleton in Alzheimer's disease. Brain Res Rev. 2011;67(1-2):184-92. doi: 10.1016/j.brainresrev.2011.01.003.
  • 14. Munsie LN, Truant R. The role of the cofilin-actin rod stress response in neurodegenerative diseases uncovers potential new drug targets. Bioarchitecture. 2012;2(6):204-8. doi: 10.4161/bioa.22549.
  • 15. Nowak K, McCullagh K, Poon E, Davies KE. Muscular dystrophies related to the cytoskeleton/nuclear envelope. Novartis Found Symp. 2005;264:98-111; discussion 112-7, 227-30.
  • 16. Clarkson E, Costa CF, Machesky LM. Congenital myopathies: diseases of the actin cytoskeleton. J Pathol. 2004;204(4):407-17.
  • 17. Li S, Duance VC, Blain EJ. F-actin cytoskeletal organization in intervertebral disc health and disease. Biochem Soc Trans. 2007;35(Pt 4):683-5.
  • 18. Kumagai T, Mouawad F, Takano T. Pathogenesis of common glomerular diseases role of the podocyte cytoskeleton. Cell Health and Cytoskeleton 2012:4 103–118
  • 19. Kanaan Z, Qadan M, Eichenberger MR, Galandiuk S. The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer. Genet Test Mol Biomarkers. 2010;14(3):347-53. doi: 10.1089/gtmb.2009.0197.
  • 20. Sarantitis I, Papanastasopoulos P, Manousi M, Baikoussis NG, Apostolakis E. The cytoskeleton of the cardiac muscle cell. Hellenic J Cardiol. 2012;53(5):367-79.
  • 21. Ono A, Westein E, Hsiao S, Nesbitt WS, Hamilton JR, Schoenwaelder SM, Jackson SP. Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood. 2008;112(1):90-9. doi: 10.1182/blood-2007-12-127001.
  • 22. Cooper GM, Hausman RE. (2000) The Cell, A molecular approach, 3rd edition, ASM press, Washington D.C. p 462-463
  • 23. Marx A, Pless J, Mandelkow EM, Mandelkow E. On The Rigidity Of The Cytoskeleton: Are MAPs crosslinkers or spacers of microtubules? Cellular and Molecular Biology 2000; 46 (5), 949-965
  • 24. Lodish A, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. (2000) Microtubule Dynamics and Associated Proteins. Section 19:2, Molecular Cell Biology, 4th Edition. W.H. Freeman and Company, New York
  • 25. Baird FJ, Bennett CL. Microtubule defects & Neurodegeneration. J Genet Syndr Gene Ther. 2013;4:203.
  • 26. Zhao M, Ko SY, Liu JH, Chen D, Zhang J, Wang B, Harris SE, Oyajobi BO, Mundy GR. Inhibition of microtubule assembly in osteoblasts stimulates bone morphogenetic protein 2 expression and bone formation through transcription factor Gli2. Mol Cell Biol. 2009;29(5):1291-305. doi: 10.1128/MCB.01566-08.
  • 27. Zou W, Greenblatt MB, Brady N, Lotinun S, Zhai B, de Rivera H, Singh A, Sun J, Gygi SP, Baron R, Glimcher LH, Jones DC. The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2. J Exp Med. 2013;210(9):1793-806. doi: 10.1084/jem.20111790.
  • 28. Spencer JA, Eliazer S, Ilaria RL Jr, Richardson JA, Olson EN. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol. 2000;150(4):771-84.
  • 29. Cooper G 4th . Proliferating cardiac microtubules. Am J Physiol Heart Circ Physiol. 2009;297(2):H510-1. doi: 10.1152/ajpheart.00517.2009.
  • 30. Saji K, Fukumoto Y, Suzuki J, Fukui S, Nawata J, Shimokawa H. Colchicine, a microtubule depolymerizing agent, inhibits myocardial apoptosis in rats. Tohoku J Exp Med. 2007;213(2):139-48.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Derleme
Yazarlar

Abdullah Melekoğlu

Oğuz Karahan 0000-0003-0044-9476

Yayımlanma Tarihi 23 Ağustos 2019
Gönderilme Tarihi 16 Şubat 2019
Kabul Tarihi 13 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 3 Sayı: 2

Kaynak Göster

Vancouver Melekoğlu A, Karahan O. Structures of Cytoskeleton and Disease Interactions. Acta Med. Alanya. 2019;3(2):197-202.

9705 

Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.