Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 3, 112 - 130, 30.09.2020

Öz

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

yok

Kaynakça

  • Christenson, L., Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv., 29 (6), 686-702.
  • Pragya, N., Pandey, K.K., Sahoo, P.K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae, Renewable Sustainable Energy Rev., 24, 159-171.
  • Suali, E., Sarbatly, R. (2012). Conversion of microalgae to biofuel, Renewable Sustainable Energy Rev., 16 (6), 4316-4342.
  • Cai, T., Park, S.Y., Li, Y.B. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renewable Sustainable Energy Rev., 19, 360-369.
  • Pawlowki, A., Mendoza, J.l., Guzman, J.L., Berenguel, M., Acien, F.G., Dormido, S. (2014). Effective utilizationof flue gases in raceway react or with event based pH control for microalgae culture, Bioresour. Technol., 170, 1-9.
  • Bahadar, A., Bilal Khan, M. (2013). Progress in energy from microalgae: A review, Renewable Sustainable Energy Rev., 27, 128-148.
  • Kobayashi, M., Kakizono, T., Yamaguchi, K., Nishio, N., Nagai, S. (1992). Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions, J. Ferment. Bioeng., 74 (1), 1720.
  • Wang, H., Xiong, H., Hui, Z., Zeng, X. (2012). Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol., 104, 215-220.
  • Mitra, D., Van Leeuwen, J., Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products, Algal Res., 1 (1), 40-48,
  • Kim, S., Park, J.E., Cho, Y.B., Hwang, S.J. (2013). Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions, Bioresour, Technol., 144, 8-13.
  • Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Appl. Energy, 103, 444-467.
  • Brennan, L., Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable Sustainable Energy Rev., 14 (2), 557-577.
  • Borowitzka, M.A. (1997). Microalgae for Aquaculture: Opportunities and Constraints. In: Journal of Applied Phycology 9/5 (1997), pp. 393–401.
  • Lakaniemi, A.M. (2012). Microalgal cultivation and utilization in sustainable energy production, Ph. D., Tampere University of Technology, Department of Chemistry and Bioengineering,Tampere.
  • Chisti, Y. (2007). Biodiesel from microalgae, Biotechnol. Adv., 25 (3), 294-306.
  • Schenk, P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production, Bioenergy Res., 1 (1), 20-43.
  • Khan, S.A., Rashmi Hussain, M.Z., Prasad, S., Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India, Renewable Sustainable Energy Rev., 13 (9), 2361-2372.
  • Demirbas, A. (2010). Use of algae as biofuel sources, Energy Convers. Manage., 51 (12), 2738- 2749,
  • Duerr, E.O., Molnar, A., Sato, V. (1998). Cultured Microalgae as Aquaculture Feeds. In: Journal of Marine Biotechnology 6/2 (1998), pp. 65–70.
  • Elçik, H., Çakmakçı, M. (2017). Mikroalg Üretimi ve Mikroalglerden Biyoyakıt Üretimi. Journal of the Faculty of Enginering and Architecture of Gazi University, 32:3 (2017), 795-820.
  • Yılmaz, H., K. (2006). Mikroalg Üretimi İçin Fotobiyoreaktör Tasarımları. E.Ü. Su Ürünleri Dergisi, 23 (1/2), 327-332.
  • Eliçin, A.,K., Kılıçkan, A., Avcıoğlu, A.O. (2009). Mikroalglerden Biyodizel Üretimi. 23. Tarımsal Mekanizasyon Ulusal Kongresi Bildiri Kitabı, 273-278, Isparta.
  • Gezici, M. (2012). Biyodizel Üretimine Uygun Mikroalglerin Gelişimine Bazı Yetiştirme Parametrelerinin Etkisinin Belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları Anabilim Dalı, Ankara, 2012, pp:1-17, Ankara.
  • Sánchez Mirón, A., Contreras Gómez, A., Garcıa ́ Camacho, F., Molina Grima, E., Chisti Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae, J. Biotechnol., 70 (1–3), 249-270.
  • Molina, E., Fernández, J., Acién, F.G., Chisti, Y. (2001).Tubular photobioreactor design for algal cultures, J. Biotechnol., 92 (2), 113-131.
  • Muller-Feuga, A., Moal, J., Kaas, R. (2003). The Microalgae of Aquaculture. In: Støttrup, J.G.; McEvoy, L.A. (eds.): Live Feeds in Marine Aquaculture. Oxford, pp. 206–252.
  • Naz, M., Gökçek, K. (2006). Fotobiyorewaktörler. Fototropik Mikroorganizmalar için Alternatif Üretim Sistemleri, Ulusal Su Günleri 2004, 6-8 Ekim 2004, İzmir.
  • Watanabe, Y., Saiki, H. (1997). Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Convers. Manage., 38, Supplement, S499-S503,
  • Ugwu, C.U., Ogbonna, J.C. (2002). Tanaka H. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers, Appl. Microbiol. Biotechnol., 58 (5), 600-607.
  • Huntley, M.E., Redalje, D.G. (2006). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal, Mitig. adapt. strategies glob. chang. , 12 (4), 573-608.
  • Tawfig, S.A., Suadand, A.H., Jacob, D.A. (2004). Optimum Culture Conditions Required For Tel- ocally Isolated Dunaliella salina, Journal of Algal Biomass Utilization. Volume 1(2), pp:12-19.
  • Tredici, M.R., Biondi, N., Ponis, E. (2009). Advances in Microalgal Culture for Aquaculture Feed and Other Uses. In: Burnell, G.; Allan, G. (eds.): New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management. Cambridge, pp. 611–676.
  • FAO. (2009). Alg üretim istatistikleri web sitesi. (http://www.fao.org/corp/statistics/en/).
  • Zhang, X., Hu, Q., Sommerfeld, N., Puruhita, E., Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes, Bioresour. Technol. 101 (14), 5297-5304.
  • Zmora, O., Richmond, A. 2004. Microalgae for Aquaculture: Microalgae Production for Aquaculture. In: Richmond, A. (eds.): Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford, pp. 365–379.

Akuakültürde Mikroalg Üretim Sistemleri ve Fotobiyoreaktörler Dünyada ve Ülkemizde Kullanımı

Yıl 2020, Cilt: 3 Sayı: 3, 112 - 130, 30.09.2020

Öz

Mikroalgler üretiminde biyoteknolojik ve teknik uygulamalar gösteriyor ki, gıda, yem, tarım, çevre ve kozmetik gibi alanlar içerisinde kullanımlarına yönelik olumlu çalışmalar yapılmaktadır. Bu bağlamda, mikroalg üretimi biyoteknolojik bir tabana dayandırılmalıdır. Mikroalgin büyük ölçekli üretilmesindeki hedef, düşük maliyetle yüksek kalitede ürün geliştirmekdir. Büyük hacimli üretim sistemlerinde direk ve etkili ışık alımı, ısı, kültürde hidrodinamik denge ve alg üretiminde süreklilik vb. temel konular kıyaslanmalıdır. Mikroalgler kendine özgü optimum şartların sağlandığı kültür ortamında yaşarlar. Spirulina sp yüksek sıcaklık, yüksek pH ve bikarbonat yoğunluğunda, Chlorella sp zengin besin ortamında, Dunaliella salina ise çok daha yüsek tuzlulukta en iyi büyümeyi göstermektedir.
Mikroalg üretimde uygulanan teknik tasarımlara fotobiyoreaktör denir. Dış (açık) mekândaki fotobiyoreaktörler, mikroalg üretiminde yapılandırılmış, direk güneş ışığından yararlanarak şeffaf pleksiglas (plastik cam) silindir borular içerisinde algin sürekli devir-daim edildiği modellerdir. Kapalı (iç) mekân mikroalg biyoreaktörleri; küçük hacimli, basınca dayanıklı şeffaf torbalar, tübüler reaktörler ve düz-levha tipi fotobiyoreaktördir. Akuakültürdeki diğer biyoreaktörler, geniş hacimli ve basınca dayanıklı torbalar ve polyester konteynerler. Biocoil model reaktör, küçük çaplı şeffaf plastik cam borulardan oluşan ve paslanmaz çelikten oluşan kuleyi saran tasarımla oluşturulan helozoik tüplü fotobiyoreaktörlerdir.
Ülkelerin 2009 yılı mikroalg üretimlerine göre; % 47 ile ABD sektörde önderdir. ABD’nin ürettiği mikroalglerin büyük kısmını tıp ve eczacılık, kozmetik alanlarında değerlendirir. Mikroalg tabanlı biyofuel eldesine daha küçük oranda yer vermektedir. Çin % 21’lik alg üretimiyle ikinci sırada olurken, ürettiği mikroalglerin tamamını gıda endüstrisinde değerlendirir. Avustralya ve Yeni Zelanda % 14 ile Çini takip eder. Yeni Zelanda ise, mikroalg tabanlı biyoyakıt elde etme konusunda mikroalgleri en verimli kullanan ülkedir. Avrupa Birliği Ülkeleri % 10 üretimleriyle Arjantin % 6, Brezilya % 2 ile izlemektedir.
Ticari mikroalglerin arzu edilen kalitede üretilmesi için fotobiyoreaktörlerin doğru tespiti önemli bir husustur.

Proje Numarası

yok

Kaynakça

  • Christenson, L., Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv., 29 (6), 686-702.
  • Pragya, N., Pandey, K.K., Sahoo, P.K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae, Renewable Sustainable Energy Rev., 24, 159-171.
  • Suali, E., Sarbatly, R. (2012). Conversion of microalgae to biofuel, Renewable Sustainable Energy Rev., 16 (6), 4316-4342.
  • Cai, T., Park, S.Y., Li, Y.B. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renewable Sustainable Energy Rev., 19, 360-369.
  • Pawlowki, A., Mendoza, J.l., Guzman, J.L., Berenguel, M., Acien, F.G., Dormido, S. (2014). Effective utilizationof flue gases in raceway react or with event based pH control for microalgae culture, Bioresour. Technol., 170, 1-9.
  • Bahadar, A., Bilal Khan, M. (2013). Progress in energy from microalgae: A review, Renewable Sustainable Energy Rev., 27, 128-148.
  • Kobayashi, M., Kakizono, T., Yamaguchi, K., Nishio, N., Nagai, S. (1992). Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions, J. Ferment. Bioeng., 74 (1), 1720.
  • Wang, H., Xiong, H., Hui, Z., Zeng, X. (2012). Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids, Bioresour. Technol., 104, 215-220.
  • Mitra, D., Van Leeuwen, J., Lamsal, B. (2012). Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products, Algal Res., 1 (1), 40-48,
  • Kim, S., Park, J.E., Cho, Y.B., Hwang, S.J. (2013). Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions, Bioresour, Technol., 144, 8-13.
  • Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Appl. Energy, 103, 444-467.
  • Brennan, L., Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable Sustainable Energy Rev., 14 (2), 557-577.
  • Borowitzka, M.A. (1997). Microalgae for Aquaculture: Opportunities and Constraints. In: Journal of Applied Phycology 9/5 (1997), pp. 393–401.
  • Lakaniemi, A.M. (2012). Microalgal cultivation and utilization in sustainable energy production, Ph. D., Tampere University of Technology, Department of Chemistry and Bioengineering,Tampere.
  • Chisti, Y. (2007). Biodiesel from microalgae, Biotechnol. Adv., 25 (3), 294-306.
  • Schenk, P.M., Thomas-Hall S.R., Stephens E., Marx U.C., Mussgnug J.H., Posten C., Kruse O., Hankamer B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production, Bioenergy Res., 1 (1), 20-43.
  • Khan, S.A., Rashmi Hussain, M.Z., Prasad, S., Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India, Renewable Sustainable Energy Rev., 13 (9), 2361-2372.
  • Demirbas, A. (2010). Use of algae as biofuel sources, Energy Convers. Manage., 51 (12), 2738- 2749,
  • Duerr, E.O., Molnar, A., Sato, V. (1998). Cultured Microalgae as Aquaculture Feeds. In: Journal of Marine Biotechnology 6/2 (1998), pp. 65–70.
  • Elçik, H., Çakmakçı, M. (2017). Mikroalg Üretimi ve Mikroalglerden Biyoyakıt Üretimi. Journal of the Faculty of Enginering and Architecture of Gazi University, 32:3 (2017), 795-820.
  • Yılmaz, H., K. (2006). Mikroalg Üretimi İçin Fotobiyoreaktör Tasarımları. E.Ü. Su Ürünleri Dergisi, 23 (1/2), 327-332.
  • Eliçin, A.,K., Kılıçkan, A., Avcıoğlu, A.O. (2009). Mikroalglerden Biyodizel Üretimi. 23. Tarımsal Mekanizasyon Ulusal Kongresi Bildiri Kitabı, 273-278, Isparta.
  • Gezici, M. (2012). Biyodizel Üretimine Uygun Mikroalglerin Gelişimine Bazı Yetiştirme Parametrelerinin Etkisinin Belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Tarım Makinaları Anabilim Dalı, Ankara, 2012, pp:1-17, Ankara.
  • Sánchez Mirón, A., Contreras Gómez, A., Garcıa ́ Camacho, F., Molina Grima, E., Chisti Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae, J. Biotechnol., 70 (1–3), 249-270.
  • Molina, E., Fernández, J., Acién, F.G., Chisti, Y. (2001).Tubular photobioreactor design for algal cultures, J. Biotechnol., 92 (2), 113-131.
  • Muller-Feuga, A., Moal, J., Kaas, R. (2003). The Microalgae of Aquaculture. In: Støttrup, J.G.; McEvoy, L.A. (eds.): Live Feeds in Marine Aquaculture. Oxford, pp. 206–252.
  • Naz, M., Gökçek, K. (2006). Fotobiyorewaktörler. Fototropik Mikroorganizmalar için Alternatif Üretim Sistemleri, Ulusal Su Günleri 2004, 6-8 Ekim 2004, İzmir.
  • Watanabe, Y., Saiki, H. (1997). Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas, Energy Convers. Manage., 38, Supplement, S499-S503,
  • Ugwu, C.U., Ogbonna, J.C. (2002). Tanaka H. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers, Appl. Microbiol. Biotechnol., 58 (5), 600-607.
  • Huntley, M.E., Redalje, D.G. (2006). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal, Mitig. adapt. strategies glob. chang. , 12 (4), 573-608.
  • Tawfig, S.A., Suadand, A.H., Jacob, D.A. (2004). Optimum Culture Conditions Required For Tel- ocally Isolated Dunaliella salina, Journal of Algal Biomass Utilization. Volume 1(2), pp:12-19.
  • Tredici, M.R., Biondi, N., Ponis, E. (2009). Advances in Microalgal Culture for Aquaculture Feed and Other Uses. In: Burnell, G.; Allan, G. (eds.): New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management. Cambridge, pp. 611–676.
  • FAO. (2009). Alg üretim istatistikleri web sitesi. (http://www.fao.org/corp/statistics/en/).
  • Zhang, X., Hu, Q., Sommerfeld, N., Puruhita, E., Chen, Y. (2010). Harvesting algal biomass for biofuels using ultrafiltration membranes, Bioresour. Technol. 101 (14), 5297-5304.
  • Zmora, O., Richmond, A. 2004. Microalgae for Aquaculture: Microalgae Production for Aquaculture. In: Richmond, A. (eds.): Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford, pp. 365–379.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrobiyoloji
Bölüm Review Articles
Yazarlar

Hilal Kargın 0000-0002-1423-0881

Proje Numarası yok
Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 23 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 3

Kaynak Göster

APA Kargın, H. (2020). Akuakültürde Mikroalg Üretim Sistemleri ve Fotobiyoreaktörler Dünyada ve Ülkemizde Kullanımı. Mediterranean Fisheries and Aquaculture Research, 3(3), 112-130. https://doi.org//medfar.v3i56990.756666

MedFAR, Mersin Üniversitesi Su Ürünleri Fakültesi tarafından İngilizce ve Türkçe olarak yayınlanmaktadır. MedFAR herhangi bir yayın ücreti uygulamamaktadır.

MedFAR'da Yayınlanan Makaleler Creative Common Licence tarafından lisanslanmaktadır.
 by-nc.svg

medfar@mersin.edu.tr