Derleme
BibTex RIS Kaynak Göster

Ağır metal maruziyetinde disbiyozis ve probiyotikler

Yıl 2021, , 146 - 158, 30.04.2021
https://doi.org/10.26559/mersinsbd.709342

Öz

Modern yaşamda ağır metallerin artan kullanımı, ağır metal maruziyetinde önemli ölçüde artışa sebep olmuştur. Ağır metallerin doğada yüksek kalıcılıkları ve yaygın maruziyet sebebiyle bu durum ağır metal maruziyetini önemli bir halk sağlığı problemi haline getirmiştir. Ağır metaller intestinal mikrobiyotanın yapısını ve çeşitliliğini etkileyerek disbiyozise sebep olmaktadır. Ağır metal maruziyetinin sebep olduğu disbiyozisin; oksidatif stres, karaciğer hasarı ve obezite gibi çeşitli sağlık sorunları ile ilişkili olabileceği bildirilmiştir. Probiyotiklerin ağır metallerin neden olduğu hasarı azaltmada, mikrobiyotanın yeniden dengelenmesinde ve sağlığının sürdürülmesinde umut verici olduğu belirtilmektedir. Bu derlemenin amacı, ağır metal maruziyetinin intestinal mikrobiyotaya olası etkilerini, bu etkilerin metabolik sonuçlarını ve probiyotik takviyesinin ağır metal toksisitesini iyileştirme potansiyelini değerlendirmektir

Kaynakça

  • Kaynaklar 1. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014; 7(2): 60-72.
  • 2. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018; 119(1): 157-184.
  • 3. Yılmaz K, Altındiş M. Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Med 2017; 13(1): 9-15.
  • 4. Koçak T, Şanlıer N. Mikrobesin öğeleri ve mikrobiyota etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2017; 6(4): 290-302.
  • 5. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018; 8(1): 6578.
  • 6. Lu K, Abo RP, Schlieper KA, Graffam ME. Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 7. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine, S, Wishnok, JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 8. Lu K, Mahbub R, Cable PH, Ru H, Parry NM, Bodnar WM, Wishnok JS, Styblo M, Swenberg JA, Fox JG, Tannenbaum SR. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism. Chem Res Toxicol 2014; 27: 172–174.
  • 9. Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere. 2014; 112: 1-8.
  • 10. Dahan D, Jude BA, Lamendella R, Keesing F, Perron GG. Exposure to arsenic alters the microbiome of larval zebrafish. Frontiers in Microbiology. 2018; 9: 1323.
  • 11. Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017; 30(4): 996-1005. doi: 10.1021/acs.chemrestox.6b00401.
  • 12. Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209: 1–8.
  • 13. Wu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC, Xi C. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight ıncreases in adult mice. Toxicol Sci. 2016; 151(2): 324-333.
  • 14. Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligné B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 2013; 14: 62.
  • 15. Cani PD, Everard A. Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation. Medecine Sciences: M/S. 2014; 30(2): 125-127.
  • 16. Li Y, Liu K, Shen J, Liu Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 2016; 7(8): 3524-3530.
  • 17. Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. chem Res Toxicol. 2015; 28(10): 2000-2009.
  • 18. Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV. Gut as a target for cadmium toxicity. Environ Pollut. 2018; 235: 429-434.
  • 19. Plunkett CH, Nagler CR. The ınfluence of the microbiome on allergic sensitization to food. J Immunol. 2017; 198(2): 581-589.
  • 20. Ba Q, Li M, Chen P, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environmental Health Perspectives. 2017; 125(3): 437-446.
  • 21. Jafarpour, D.; Shekarforoush, S. S.; Ghaisari, H. R.; Nazifi, S.; Sajedianfard, J. Impact of synbiotic diets ıncluding ınulin, bacillus coagulans and lactobacillus plantarum on ıntestinal microbiota of rat exposed to cadmium and mercury. Vet Sci Develop 2015; 5: 2.
  • 22. Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W,et al. Gut remediation: A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 2017; 7: 15000.
  • 23. Gillois K, Lévêque M, Théodorou V, Robert H, Mercier-bonin m. mucus: an underestimated gut target for environmental pollutants and food additives. Microorganisms. 2018; 6(2): 53.
  • 24. Zhai Q, Li T, Yu L, Xiao Y, Feng S, Wu J, Zhao J, Zhang H, Chen W. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull 2017; 62(12): 831-840.
  • 25. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8(1):6578.
  • 26. Rosenfeld CS. Gut dysbiosis in animals due to environmental chemical exposures. front cell ınfect Microbiol. 2017; 7: 396.
  • 27. Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients. 2018; 11(1): 22.
  • 28. Zhai Q, Wang G, Zhao J, Zhao, J, Liu X, Tian F, Zhang H, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol. 2013; 79(5): 1508-1515.
  • 29. Zhai Q, Wang G, Zhao J, Liu X, Narbad A, Chen YQ, Zhang H, Tian F, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol. 2014; 80(13): 4063-71.
  • 30. Chattopadhyay S, Khatun S, Maity M, Jana S, Perveen H, Dash M, Dey A, Jana LR, Maity PP. Association of vitamin B12, lactate dehydrogenase, and regulation of nf-κb in the mitigation of sodium arsenite-ınduced ros generation in uterine tissue by commercially available probiotics. Probiotics Antimicrob Proteins. 2019; 11(1): 30-42.
  • 31. Jama AM, Mitic-Culafic D, Kolarevic S Durasevic SF, Knezevic-Vukcevic J. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes in vivo and in vitro. Arch Biol Sci 2012; 64(3): 1197–1206.
  • 32. Djurasevic S, Jama A, Jasnic N, Vujovic P, Jovanovic M, Mitic-Culafic D, Knezevic-Vukcevic J, Cakic-Milosevic M, Ilijevic K, Djordjevic J. The protective effects of probiotic bacteria on cadmium toxicity in rats. J Med Food. 2017; 20(2): 189-196.
  • 33. Majlesi M, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH. Effect of probiotic bacillus coagulans and lactobacillus plantarum on alleviation of mercury toxicity in rat. Probiotics Antimicrob Proteins. 2017; 9(3): 300-309.
  • 34. Li B, Jin D, Yu S, Etareri Evivie S, Muhammad Z, Huo G, Liu F. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity. Nutrients. 2017; 9(8): 845.
  • 35. Zhai Q, Liu Y, Wang C, Zhao J, Zhang H, Tian F, Lee YK, Chen W. Increased cadmium excretion due to oral administration of lactobacillus plantarum strains by regulating enterohepatic circulation in mice. J Agric Food Chem. 2019; 67(14): 3956-3965.
  • 36. Dheer R, Patterson J, Dudash M, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol Appl Pharmacol. 2015; 289(3): 397-408.
  • 37. Chi L, Bian X, Gao B, Ru H, Tu P, Lu K. Sex-Specific Effects of arsenic exposure on the trajectory and function of the gut microbiome. Chem Res Toxicol. 2016; 29(6): 949-51.
  • 38. Calatayud M, Vélez D, Devesa V. Metabolism of inorganic arsenic in intestinal epithelial cell lines. Chemical Research in Toxicology. 2012; 25(11): 2402-2411.
  • 39. Liu Y, Li Y, Liu K, Shen J. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS One. 2014 ;9(2): e85323.
  • 40. Fazeli M, Hassanzadeh P, Alaei S. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum Exp Toxicol. 2011; 30(2): 15

Dysbiosis in heavy metal exposure and the probiotics

Yıl 2021, , 146 - 158, 30.04.2021
https://doi.org/10.26559/mersinsbd.709342

Öz

The increasing use of heavy metals in modern life has led to a significant increase in heavy metal exposure. Heavy metals have become an important public health problem due to their high persistence and widespread exposure in nature. Heavy metals cause dysbiosis by affecting the structure and diversity of the intestinal microbiota. Exposure to heavy metals is an important public health problem due to their high persistence and widespread exposure in nature. Dysbiosis in microbiota caused by heavy metal exposure has been reported that it may be associated with various health problems such as oxidative stress, liver damage, and obesity. It is stated that probiotics are promising in reducing the damage caused by heavy metals, rebalancing microbiota and maintaining their health. The purpose of this review is to evaluate the potential effects of heavy metal exposure to the intestinal microbiota, the metabolic results of these effects and the potential of the probiotic supplement to improve heavy metal toxicity.

Kaynakça

  • Kaynaklar 1. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014; 7(2): 60-72.
  • 2. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018; 119(1): 157-184.
  • 3. Yılmaz K, Altındiş M. Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Med 2017; 13(1): 9-15.
  • 4. Koçak T, Şanlıer N. Mikrobesin öğeleri ve mikrobiyota etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2017; 6(4): 290-302.
  • 5. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018; 8(1): 6578.
  • 6. Lu K, Abo RP, Schlieper KA, Graffam ME. Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 7. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine, S, Wishnok, JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 8. Lu K, Mahbub R, Cable PH, Ru H, Parry NM, Bodnar WM, Wishnok JS, Styblo M, Swenberg JA, Fox JG, Tannenbaum SR. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism. Chem Res Toxicol 2014; 27: 172–174.
  • 9. Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere. 2014; 112: 1-8.
  • 10. Dahan D, Jude BA, Lamendella R, Keesing F, Perron GG. Exposure to arsenic alters the microbiome of larval zebrafish. Frontiers in Microbiology. 2018; 9: 1323.
  • 11. Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017; 30(4): 996-1005. doi: 10.1021/acs.chemrestox.6b00401.
  • 12. Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209: 1–8.
  • 13. Wu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC, Xi C. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight ıncreases in adult mice. Toxicol Sci. 2016; 151(2): 324-333.
  • 14. Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligné B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 2013; 14: 62.
  • 15. Cani PD, Everard A. Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation. Medecine Sciences: M/S. 2014; 30(2): 125-127.
  • 16. Li Y, Liu K, Shen J, Liu Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 2016; 7(8): 3524-3530.
  • 17. Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. chem Res Toxicol. 2015; 28(10): 2000-2009.
  • 18. Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV. Gut as a target for cadmium toxicity. Environ Pollut. 2018; 235: 429-434.
  • 19. Plunkett CH, Nagler CR. The ınfluence of the microbiome on allergic sensitization to food. J Immunol. 2017; 198(2): 581-589.
  • 20. Ba Q, Li M, Chen P, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environmental Health Perspectives. 2017; 125(3): 437-446.
  • 21. Jafarpour, D.; Shekarforoush, S. S.; Ghaisari, H. R.; Nazifi, S.; Sajedianfard, J. Impact of synbiotic diets ıncluding ınulin, bacillus coagulans and lactobacillus plantarum on ıntestinal microbiota of rat exposed to cadmium and mercury. Vet Sci Develop 2015; 5: 2.
  • 22. Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W,et al. Gut remediation: A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 2017; 7: 15000.
  • 23. Gillois K, Lévêque M, Théodorou V, Robert H, Mercier-bonin m. mucus: an underestimated gut target for environmental pollutants and food additives. Microorganisms. 2018; 6(2): 53.
  • 24. Zhai Q, Li T, Yu L, Xiao Y, Feng S, Wu J, Zhao J, Zhang H, Chen W. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull 2017; 62(12): 831-840.
  • 25. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8(1):6578.
  • 26. Rosenfeld CS. Gut dysbiosis in animals due to environmental chemical exposures. front cell ınfect Microbiol. 2017; 7: 396.
  • 27. Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients. 2018; 11(1): 22.
  • 28. Zhai Q, Wang G, Zhao J, Zhao, J, Liu X, Tian F, Zhang H, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol. 2013; 79(5): 1508-1515.
  • 29. Zhai Q, Wang G, Zhao J, Liu X, Narbad A, Chen YQ, Zhang H, Tian F, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol. 2014; 80(13): 4063-71.
  • 30. Chattopadhyay S, Khatun S, Maity M, Jana S, Perveen H, Dash M, Dey A, Jana LR, Maity PP. Association of vitamin B12, lactate dehydrogenase, and regulation of nf-κb in the mitigation of sodium arsenite-ınduced ros generation in uterine tissue by commercially available probiotics. Probiotics Antimicrob Proteins. 2019; 11(1): 30-42.
  • 31. Jama AM, Mitic-Culafic D, Kolarevic S Durasevic SF, Knezevic-Vukcevic J. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes in vivo and in vitro. Arch Biol Sci 2012; 64(3): 1197–1206.
  • 32. Djurasevic S, Jama A, Jasnic N, Vujovic P, Jovanovic M, Mitic-Culafic D, Knezevic-Vukcevic J, Cakic-Milosevic M, Ilijevic K, Djordjevic J. The protective effects of probiotic bacteria on cadmium toxicity in rats. J Med Food. 2017; 20(2): 189-196.
  • 33. Majlesi M, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH. Effect of probiotic bacillus coagulans and lactobacillus plantarum on alleviation of mercury toxicity in rat. Probiotics Antimicrob Proteins. 2017; 9(3): 300-309.
  • 34. Li B, Jin D, Yu S, Etareri Evivie S, Muhammad Z, Huo G, Liu F. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity. Nutrients. 2017; 9(8): 845.
  • 35. Zhai Q, Liu Y, Wang C, Zhao J, Zhang H, Tian F, Lee YK, Chen W. Increased cadmium excretion due to oral administration of lactobacillus plantarum strains by regulating enterohepatic circulation in mice. J Agric Food Chem. 2019; 67(14): 3956-3965.
  • 36. Dheer R, Patterson J, Dudash M, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol Appl Pharmacol. 2015; 289(3): 397-408.
  • 37. Chi L, Bian X, Gao B, Ru H, Tu P, Lu K. Sex-Specific Effects of arsenic exposure on the trajectory and function of the gut microbiome. Chem Res Toxicol. 2016; 29(6): 949-51.
  • 38. Calatayud M, Vélez D, Devesa V. Metabolism of inorganic arsenic in intestinal epithelial cell lines. Chemical Research in Toxicology. 2012; 25(11): 2402-2411.
  • 39. Liu Y, Li Y, Liu K, Shen J. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS One. 2014 ;9(2): e85323.
  • 40. Fazeli M, Hassanzadeh P, Alaei S. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum Exp Toxicol. 2011; 30(2): 15
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Kevser Başoğlu 0000-0003-1601-0994

Aylin Ayaz 0000-0002-3543-7881

Yayımlanma Tarihi 30 Nisan 2021
Gönderilme Tarihi 27 Mart 2020
Kabul Tarihi 24 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Başoğlu, K., & Ayaz, A. (2021). Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Üniversitesi Sağlık Bilimleri Dergisi, 14(1), 146-158. https://doi.org/10.26559/mersinsbd.709342
AMA Başoğlu K, Ayaz A. Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Univ Saglık Bilim Derg. Nisan 2021;14(1):146-158. doi:10.26559/mersinsbd.709342
Chicago Başoğlu, Kevser, ve Aylin Ayaz. “Ağır Metal Maruziyetinde Disbiyozis Ve Probiyotikler”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14, sy. 1 (Nisan 2021): 146-58. https://doi.org/10.26559/mersinsbd.709342.
EndNote Başoğlu K, Ayaz A (01 Nisan 2021) Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14 1 146–158.
IEEE K. Başoğlu ve A. Ayaz, “Ağır metal maruziyetinde disbiyozis ve probiyotikler”, Mersin Univ Saglık Bilim Derg, c. 14, sy. 1, ss. 146–158, 2021, doi: 10.26559/mersinsbd.709342.
ISNAD Başoğlu, Kevser - Ayaz, Aylin. “Ağır Metal Maruziyetinde Disbiyozis Ve Probiyotikler”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14/1 (Nisan 2021), 146-158. https://doi.org/10.26559/mersinsbd.709342.
JAMA Başoğlu K, Ayaz A. Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Univ Saglık Bilim Derg. 2021;14:146–158.
MLA Başoğlu, Kevser ve Aylin Ayaz. “Ağır Metal Maruziyetinde Disbiyozis Ve Probiyotikler”. Mersin Üniversitesi Sağlık Bilimleri Dergisi, c. 14, sy. 1, 2021, ss. 146-58, doi:10.26559/mersinsbd.709342.
Vancouver Başoğlu K, Ayaz A. Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Univ Saglık Bilim Derg. 2021;14(1):146-58.

MEÜ Sağlık Bilimleri Dergisi Doç.Dr. Gönül Aslan'ın Editörlüğünde Mersin Üniversitesi Sağlık Bilimleri Enstitüsüne bağlı olarak 2008 yılında yayımlanmaya başlanmıştır. Prof.Dr. Gönül Aslan Mart 2015 tarihinde Başeditörlük görevine Prof.Dr. Caferi Tayyar Şaşmaz'a devretmiştir. 01 Ocak 2023 tarihinde Prof.Dr. C. Tayyar Şaşmaz Başeditörlük görevini Prof.Dr. Özlem İzci Ay'a devretmiştir. 

Yılda üç sayı olarak (Nisan - Ağustos - Aralık) yayımlanan dergi multisektöryal hakemli bir bilimsel dergidir. Dergide araştırma makaleleri yanında derleme, olgu sunumu ve editöre mektup tipinde bilimsel yazılar yayımlanmaktadır. Yayın hayatına başladığı günden beri eposta yoluyla yayın alan ve hem online hem de basılı olarak yayımlanan dergimiz, Mayıs 2014 sayısından itibaren sadece online olarak yayımlanmaya başlamıştır. TÜBİTAK-ULAKBİM Dergi Park ile Nisan 2015 tarihinde yapılan Katılım Sözleşmesi sonrasında online yayın kabul ve değerlendirme sürecine geçmiştir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 16 Kasım 2011'dan beri Türkiye Atıf Dizini tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 2016 birinci sayıdan itibaren ULAKBİM Tıp Veri Tabanı tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 02 Ekim 2019'dan beri DOAJ tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 23 Mart 2021'den beri EBSCO tarafından indekslenmektedir.


Dergimiz açık erişim politikasını benimsemiş olup, dergimizde makale başvuru, değerlendirme ve yayınlanma aşamasında ücret talep edilmemektedir. Dergimizde yayımlanan makalelerin tamamına ücretsiz olarak Arşivden erişilebilmektedir.

154561545815459   

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı  ile lisanslanmıştır.