Derleme
BibTex RIS Kaynak Göster

New strategies in combating antimicrobial resistance: Antibacterial potential of imidazole-containing molecules

Yıl 2024, Cilt: 17 Sayı: 3, 496 - 510, 20.12.2024

Öz

Diseases are treated with pharmaceuticals derived from both natural and synthetic sources, with synthetic formulations predominating. The indiscriminate use of antibiotics in treating microorganisms responsible for infectious diseases has resulted in the emergence of novel resistance mechanisms including multidrug-resistant bacteria. The World Health Organization identifies antimicrobial resistance as one of the most critical health challenges currently and in the foreseeable future. To resolve this issue, it is essential to identify novel medication candidates with diverse antibacterial modes of action. Therefore, it is essential to develop and promote novel drug candidates containing the imidazole ring, a five-membered heterocyclic structure featuring one or more nitrogen atoms, alongside various heterocycles recognized for their notable antibacterial efficacy. In recent years, researchers have designed and synthesized molecules containing imidazole rings and significant heterocyclic structures, examining their antibacterial efficacy against diverse Gram-negative and Gram-positive bacteria that have acquired resistance to current pharmaceuticals. This study evaluates the factors contributing to antimicrobial resistance, the function of heterocyclic compounds in combating this resistance, and the antibacterial properties of imidazole ring-containing molecules synthesized in the past five years (2020-2024).

Kaynakça

  • Salam MA, Al-Amin MY, Salam MT, et al. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare. 2023;11(13)doi:10.3390/healthcare11131946
  • Ahmed SK, Hussein S, Qurbani K, et al. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health. 2024;2doi:10.1016/j.glmedi.2024.100081
  • Aransiola SA, Selvaraj B, Maddela NR. Bacterial biofilm formation and anti-biofilm strategies. Research in Microbiology. 2024;175(3)doi:10.1016/j.resmic.2023.104172
  • Laxminarayan R, Impalli I, Rangarajan R, et al. Expanding antibiotic, vaccine, and diagnostics development and access to tackle antimicrobial resistance. The Lancet. 2024;403(10443):2534-2550. doi:10.1016/s0140-6736(24)00878-x
  • Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals. 2023;16(11)doi:10.3390/ph16111615
  • Cruz-Cárdenas J, Zabelina E, Guadalupe-Lanas J, Palacio-Fierro A, Ramos-Galarza C. COVID-19, consumer behavior, technology, and society: A literature review and bibliometric analysis. Technological Forecasting and Social Change. 2021;173doi:10.1016/j.techfore.2021.121179
  • Mendelson M, Lewnard JA, Sharland M, et al. Ensuring progress on sustainable access to effective antibiotics at the 2024 UN General Assembly: a target-based approach. The Lancet. 2024;403(10443):2551-2564. doi:10.1016/s0140-6736(24)01019-5
  • Costanzo V, Roviello GN. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines. 2023;11(2)doi:10.3390/vaccines11020333
  • Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infection and Drug Resistance. 2023;Volume 16:7515-7545. doi:10.2147/idr.S428837
  • Helmy YA, Taha-Abdelaziz K, Hawwas HAE-H, et al. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics. 2023;12(2)doi:10.3390/antibiotics12020274
  • Sachdev C, Anjankar A, Agrawal J. Self-Medication With Antibiotics: An Element Increasing Resistance. Cureus. 2022;doi:10.7759/cureus.30844
  • Essack S. Water, sanitation and hygiene in national action plans for antimicrobial resistance. Bulletin of the World Health Organization. 2021;99(08):606-608. doi:10.2471/blt.20.284232
  • Hoellein L, Kaale E, Mwalwisi YH, Schulze MH, Vetye-Maler C, Holzgrabe U. Emerging Antimicrobial Drug Resistance in Africa and Latin America: Search for Reasons. Risk Management and Healthcare Policy. 2022;Volume 15:827-843. doi:10.2147/rmhp.S205077
  • Munita JM, Arias CA, Kudva IT, Zhang Q. Mechanisms of Antibiotic Resistance. Microbiology Spectrum. 2016;4(2)doi:10.1128/microbiolspec.VMBF-0016-2015
  • Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ. Bacterial Metabolism and Antibiotic Efficacy. Cell Metabolism. 2019;30(2):251-259. doi:10.1016/j.cmet.2019.06.009
  • WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  • Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. https://www.who.int/publications/i/item/9789240093461
  • De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews. 2020;33(3)doi:10.1128/cmr.00181-19
  • Aljeldah MM. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics. 2022;11(8)doi:10.3390/antibiotics11081082
  • Zhang F, Cheng W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics. 2022;11(9)doi:10.3390/antibiotics11091215
  • Mirghani R, Saba T, Khaliq H, et al. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiology. 2022;8(3):239-277. doi:10.3934/microbiol.2022019
  • Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics. 2023;12(2)doi:10.3390/antibiotics12020328
  • Tao S, Chen H, Li N, Wang T, Liang W, Kaushik S. The Spread of Antibiotic Resistance Genes In Vivo Model. Canadian Journal of Infectious Diseases and Medical Microbiology. 2022;2022:1-11. doi:10.1155/2022/3348695
  • Wielders CLC, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. mecA Gene Is Widely Disseminated in Staphylococcus aureus Population. Journal of Clinical Microbiology. 2002;40(11):3970-3975. doi:10.1128/jcm.40.11.3970-3975.2002
  • Ma J, Song X, Li M, et al. Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiological Research. 2023;266doi:10.1016/j.micres.2022.127249
  • Husna A, Rahman MM, Badruzzaman ATM, et al. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines. 2023;11(11)doi:10.3390/biomedicines11112937
  • Ramos-Martín F, D’Amelio N. Drug Resistance: An Incessant Fight against Evolutionary Strategies of Survival. Microbiology Research. 2023;14(2):507-542. doi:10.3390/microbiolres14020037
  • Gros M, Mas-Pla J, Sànchez-Melsió A, et al. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. Science of The Total Environment. 2023;857doi:10.1016/j.scitotenv.2022.159202
  • Du J, Guo J, Kang D, et al. New techniques and strategies in drug discovery. Chinese Chemical Letters. 2020;31(7):1695-1708. doi:10.1016/j.cclet.2020.03.028
  • Hoffman PS. Antibacterial Discovery: 21st Century Challenges. Antibiotics. 2020;9(5)doi:10.3390/antibiotics9050213
  • Stojković D, Petrović J, Carević T, Soković M, Liaras K. Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. Antibiotics. 2023;12(6)doi:10.3390/antibiotics12060963
  • Miethke M, Pieroni M, Weber T, et al. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry. 2021;5(10):726-749. doi:10.1038/s41570-021-00313-1
  • Liu R, Li X, Lam KS. Combinatorial chemistry in drug discovery. Current Opinion in Chemical Biology. 2017;38:117-126. doi:10.1016/j.cbpa.2017.03.017
  • Jampilek J. Heterocycles in Medicinal Chemistry. Molecules. 2019;24(21)doi:10.3390/molecules24213839
  • Rusu A, Moga I-M, Uncu L, Hancu G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics. 2023;15(11)doi:10.3390/pharmaceutics15112554
  • Pancu DF, Scurtu A, Macasoi IG, et al. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening. Antibiotics. 2021;10(4)doi:10.3390/antibiotics10040401
  • Lin X, Kück U. Cephalosporins as key lead generation beta-lactam antibiotics. Applied Microbiology and Biotechnology. 2022;106(24):8007-8020. doi:10.1007/s00253-022-12272-8
  • Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics. 2023;12(3)doi:10.3390/antibiotics12030532
  • Tolomeu HV, Fraga CAM. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. Molecules. 2023;28(2)doi:10.3390/molecules28020838
  • Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Frontiers in Pharmacology. 2021;12doi:10.3389/fphar.2021.762807
  • Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. Physical Sciences Reviews. 2023;8(10):2903-2941. doi:10.1515/psr-2021-0041
  • Poyraz S, Yıldırım M, Ersatir M. Recent pharmacological insights about imidazole hybrids: a comprehensive review. Medicinal Chemistry Research. 2024;33(6):839-868. doi:10.1007/s00044-024-03230-2
  • Andrei GȘ, Andrei BF, Roxana PR. Imidazole Derivatives and their Antibacterial Activity - A Mini-Review. Mini-Reviews in Medicinal Chemistry. 2021;21(11):1380-1392. doi:10.2174/1389557520999201209213648
  • Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules. 2020;25(21)doi:10.3390/molecules25215133
  • Gurav SS, Jadhav SR, Mali SN, Raskar SV, Lotlikar OA, Waghmode KT. Efficient Silica-OSO3H (SSA)-Catalyzed One-Pot Multicomponent Synthesis of 1,2,4,5-Tetrasubstituted 1H-Imidazoles: Molecular Docking, Antibacterial Activity, and Plausible Mechanism. Russian Journal of Organic Chemistry. 2024;60(3):530-538. doi:10.1134/s1070428024030229
  • Dziduch K, Janowska S, Andrzejczuk S, et al. Synthesis and Biological Evaluation of New Compounds with Nitroimidazole Moiety. Molecules. 2024;29(13)doi:10.3390/molecules29133023
  • Agili F. Novel Thiazole Derivatives Containing Imidazole and Furan Scaffold: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Evaluation. Molecules. 2024;29(7)doi:10.3390/molecules29071491
  • Mahmoodi NO, Rajabi A, Nyaki HY, Nahzomi HT. Synthesis, Characterization, Molecular Docking, and Investigation of Antibacterial Properties of New Derivatives of 1‐H‐Phenanthro [9,10‐d] Imidazole. Chemistry & Biodiversity. 2024;21(6)doi:10.1002/cbdv.202400325
  • Slassi S, Aarjane M, Amine A. Novel triazole derivatives possessing imidazole: Synthesis, spectroscopic characterization (FT-IR, NMR, UV–Vis), DFT studies and antibacterial in vitro evaluation. Journal of Molecular Structure. 2023;1276doi:10.1016/j.molstruc.2022.134788
  • Liu H, Yang S, Li T, et al. Design, Synthesis and Bioactivity Evaluation of Novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles Containing an Imidazole Fragment as Antibacterial Agents. Molecules. 2023;28(6)doi:10.3390/molecules28062442
  • Xu WB, Meng YQ, Sun J, et al. Synthesis and Antibacterial Activity Evaluation of Imidazole Derivatives Containing 6‐Methylpyridine Moiety. Chemistry & Biodiversity. 2023;20(5)doi:10.1002/cbdv.202300105
  • Saeed A, Soliman AM, Al-Taisan KM, et al. Synthesis and molecular docking of new indeno[1,2-d]imidazole, indeno[1,2-e]triazine, indeno[1,2-c]pyrazole, and indeno[1,2-b]pyrrole polycyclic compounds as antibacterial and antioxidant agents. Journal of Molecular Structure. 2023;1289doi:10.1016/j.molstruc.2023.135763
  • Sudheer Reddy V, Reddy NR, Reddy AV, Padma M, Reddy LK. Synthesis of Some New N-Substituted Imidazole Derivatives and Their In Vitro Antibacterial Investigation. Russian Journal of Bioorganic Chemistry. 2022;48(3):643-650. doi:10.1134/s1068162022030189
  • Poyraz S, Döndaş HA, Sansano JM, et al. N-Benzoylthiourea-pyrrolidine carboxylic acid derivatives bearing an imidazole moiety: Synthesis, characterization, crystal structure, in vitro ChEs inhibition, and antituberculosis, antibacterial, antifungal studies. Journal of Molecular Structure. 2023;1273doi:10.1016/j.molstruc.2022.134303
  • Aziz H, Saeed A, Khan MA, et al. Novel N‐Acyl‐1H‐imidazole‐1‐carbothioamides: Design, Synthesis, Biological and Computational Studies. Chemistry & Biodiversity. 2020;17(3)doi:10.1002/cbdv.201900509
  • Khanage S, Mohite P, Pandhare R. Synthesis and Antimicrobial Evaluation of 4-(4,5-diphenyl-1H-imidazole-2-yl)-2-methoxyphenyl-N-substituted aminoacetate Derivatives. Analytical Chemistry Letters. 2020;10(4):517-523. doi:10.1080/22297928.2020.1838319
  • Choudhari D, Salunke-Gawali S, Chakravarty D, et al. Synthesis and biological activity of imidazole based 1,4-naphthoquinones. New Journal of Chemistry. 2020;44(17):6889-6901. doi:10.1039/c9nj04339j
  • Obalı AY, Akçaalan S, Arslan E, Obalı İ. Antibacterial activities and DNA-cleavage properties of novel fluorescent imidazo-phenanthroline derivatives. Bioorganic Chemistry. 2020;100doi:10.1016/j.bioorg.2020.103885
  • Valls A, Andreu JJ, Falomir E, et al. Imidazole and Imidazolium Antibacterial Drugs Derived from Amino Acids. Pharmaceuticals. 2020;13(12)doi:10.3390/ph13120482
  • Ebenezer O, Awolade P, Koorbanally N, Singh P. New library of pyrazole–imidazo[1,2‐α]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chemical Biology & Drug Design. 2019;95(1):162-173. doi:10.1111/cbdd.13632

Antimikrobiyal dirençle mücadelede yeni stratejiler: İmidazol içeren moleküllerin antibakteriyel potansiyeli

Yıl 2024, Cilt: 17 Sayı: 3, 496 - 510, 20.12.2024

Öz

Hastalıklar hem doğal hem de sentetik kaynaklı ilaçlarla tedavi edilirken tedavilerde kullanılan ilaçların büyük çoğunluğunu sentetik ilaç formülasyonları oluşturmaktadır. Enfeksiyon hastalıklarına neden olan mikroorganizmaların tedavisinde antibiyotiklerin bilinçsizce kullanılması, çoklu ilaca dirençli bakteriler de dahil olmak üzere yeni direnç mekanizmalarının ortaya çıkmasına neden olmuştur. Dünya Sağlık Örgütü’ne göre günümüzde ve yakın gelecekte karşılaşılabilecek en ciddi sağlık sorunlarından biri de antimikrobiyal dirençtir. Bu sorunun bertaraf edilebilmesi için farklı antimikrobiyal etki mekanizmalarına sahip yeni ilaç adaylarının keşfedilmesi önem arz etmektedir. Bu yüzden, önemli antibakteriyel özellikleriyle bilinen farklı heterosikliklerin yanısıra önemli antibakteriyel etkileri olan ve yapısında bir ya da daha fazla azot atomu bulunan beş üyeli heterosiklik yapılardan olan imidazol halkasını taşıyan yeni ilaç adaylarının geliştirilmesi ve pazarlanması önemlidir. Araştırmacılar, son yıllarda yapısında imidazol halkası ve önemli heterosiklik yapılar taşıyan bileşikler tasarlayıp sentezlemiş ve bunların antibakteriyel etkilerini mevcut ilaçlara karşı direnç geliştirmiş olan çeşitli Gram negatif ve Gram pozitif bakterilere karşı araştırmıştır. Bu çalışmada, antimikrobiyal dirence neden olan faktörler, heterosiklik bileşiklerin bu direnci ortadan kaldırmadaki rolü ve son beş yılda (2020-2024) sentezlenen imidazol halkası içeren moleküllerin antibakteriyel aktiviteleri değerlendirilmiştir.

Kaynakça

  • Salam MA, Al-Amin MY, Salam MT, et al. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare. 2023;11(13)doi:10.3390/healthcare11131946
  • Ahmed SK, Hussein S, Qurbani K, et al. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health. 2024;2doi:10.1016/j.glmedi.2024.100081
  • Aransiola SA, Selvaraj B, Maddela NR. Bacterial biofilm formation and anti-biofilm strategies. Research in Microbiology. 2024;175(3)doi:10.1016/j.resmic.2023.104172
  • Laxminarayan R, Impalli I, Rangarajan R, et al. Expanding antibiotic, vaccine, and diagnostics development and access to tackle antimicrobial resistance. The Lancet. 2024;403(10443):2534-2550. doi:10.1016/s0140-6736(24)00878-x
  • Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals. 2023;16(11)doi:10.3390/ph16111615
  • Cruz-Cárdenas J, Zabelina E, Guadalupe-Lanas J, Palacio-Fierro A, Ramos-Galarza C. COVID-19, consumer behavior, technology, and society: A literature review and bibliometric analysis. Technological Forecasting and Social Change. 2021;173doi:10.1016/j.techfore.2021.121179
  • Mendelson M, Lewnard JA, Sharland M, et al. Ensuring progress on sustainable access to effective antibiotics at the 2024 UN General Assembly: a target-based approach. The Lancet. 2024;403(10443):2551-2564. doi:10.1016/s0140-6736(24)01019-5
  • Costanzo V, Roviello GN. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives. Vaccines. 2023;11(2)doi:10.3390/vaccines11020333
  • Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infection and Drug Resistance. 2023;Volume 16:7515-7545. doi:10.2147/idr.S428837
  • Helmy YA, Taha-Abdelaziz K, Hawwas HAE-H, et al. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics. 2023;12(2)doi:10.3390/antibiotics12020274
  • Sachdev C, Anjankar A, Agrawal J. Self-Medication With Antibiotics: An Element Increasing Resistance. Cureus. 2022;doi:10.7759/cureus.30844
  • Essack S. Water, sanitation and hygiene in national action plans for antimicrobial resistance. Bulletin of the World Health Organization. 2021;99(08):606-608. doi:10.2471/blt.20.284232
  • Hoellein L, Kaale E, Mwalwisi YH, Schulze MH, Vetye-Maler C, Holzgrabe U. Emerging Antimicrobial Drug Resistance in Africa and Latin America: Search for Reasons. Risk Management and Healthcare Policy. 2022;Volume 15:827-843. doi:10.2147/rmhp.S205077
  • Munita JM, Arias CA, Kudva IT, Zhang Q. Mechanisms of Antibiotic Resistance. Microbiology Spectrum. 2016;4(2)doi:10.1128/microbiolspec.VMBF-0016-2015
  • Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ. Bacterial Metabolism and Antibiotic Efficacy. Cell Metabolism. 2019;30(2):251-259. doi:10.1016/j.cmet.2019.06.009
  • WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  • Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. https://www.who.int/publications/i/item/9789240093461
  • De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews. 2020;33(3)doi:10.1128/cmr.00181-19
  • Aljeldah MM. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics. 2022;11(8)doi:10.3390/antibiotics11081082
  • Zhang F, Cheng W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics. 2022;11(9)doi:10.3390/antibiotics11091215
  • Mirghani R, Saba T, Khaliq H, et al. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiology. 2022;8(3):239-277. doi:10.3934/microbiol.2022019
  • Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics. 2023;12(2)doi:10.3390/antibiotics12020328
  • Tao S, Chen H, Li N, Wang T, Liang W, Kaushik S. The Spread of Antibiotic Resistance Genes In Vivo Model. Canadian Journal of Infectious Diseases and Medical Microbiology. 2022;2022:1-11. doi:10.1155/2022/3348695
  • Wielders CLC, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. mecA Gene Is Widely Disseminated in Staphylococcus aureus Population. Journal of Clinical Microbiology. 2002;40(11):3970-3975. doi:10.1128/jcm.40.11.3970-3975.2002
  • Ma J, Song X, Li M, et al. Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiological Research. 2023;266doi:10.1016/j.micres.2022.127249
  • Husna A, Rahman MM, Badruzzaman ATM, et al. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines. 2023;11(11)doi:10.3390/biomedicines11112937
  • Ramos-Martín F, D’Amelio N. Drug Resistance: An Incessant Fight against Evolutionary Strategies of Survival. Microbiology Research. 2023;14(2):507-542. doi:10.3390/microbiolres14020037
  • Gros M, Mas-Pla J, Sànchez-Melsió A, et al. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. Science of The Total Environment. 2023;857doi:10.1016/j.scitotenv.2022.159202
  • Du J, Guo J, Kang D, et al. New techniques and strategies in drug discovery. Chinese Chemical Letters. 2020;31(7):1695-1708. doi:10.1016/j.cclet.2020.03.028
  • Hoffman PS. Antibacterial Discovery: 21st Century Challenges. Antibiotics. 2020;9(5)doi:10.3390/antibiotics9050213
  • Stojković D, Petrović J, Carević T, Soković M, Liaras K. Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. Antibiotics. 2023;12(6)doi:10.3390/antibiotics12060963
  • Miethke M, Pieroni M, Weber T, et al. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry. 2021;5(10):726-749. doi:10.1038/s41570-021-00313-1
  • Liu R, Li X, Lam KS. Combinatorial chemistry in drug discovery. Current Opinion in Chemical Biology. 2017;38:117-126. doi:10.1016/j.cbpa.2017.03.017
  • Jampilek J. Heterocycles in Medicinal Chemistry. Molecules. 2019;24(21)doi:10.3390/molecules24213839
  • Rusu A, Moga I-M, Uncu L, Hancu G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics. 2023;15(11)doi:10.3390/pharmaceutics15112554
  • Pancu DF, Scurtu A, Macasoi IG, et al. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity—A Pharmaco-Toxicological Screening. Antibiotics. 2021;10(4)doi:10.3390/antibiotics10040401
  • Lin X, Kück U. Cephalosporins as key lead generation beta-lactam antibiotics. Applied Microbiology and Biotechnology. 2022;106(24):8007-8020. doi:10.1007/s00253-022-12272-8
  • Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics. 2023;12(3)doi:10.3390/antibiotics12030532
  • Tolomeu HV, Fraga CAM. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. Molecules. 2023;28(2)doi:10.3390/molecules28020838
  • Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Frontiers in Pharmacology. 2021;12doi:10.3389/fphar.2021.762807
  • Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. Physical Sciences Reviews. 2023;8(10):2903-2941. doi:10.1515/psr-2021-0041
  • Poyraz S, Yıldırım M, Ersatir M. Recent pharmacological insights about imidazole hybrids: a comprehensive review. Medicinal Chemistry Research. 2024;33(6):839-868. doi:10.1007/s00044-024-03230-2
  • Andrei GȘ, Andrei BF, Roxana PR. Imidazole Derivatives and their Antibacterial Activity - A Mini-Review. Mini-Reviews in Medicinal Chemistry. 2021;21(11):1380-1392. doi:10.2174/1389557520999201209213648
  • Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules. 2020;25(21)doi:10.3390/molecules25215133
  • Gurav SS, Jadhav SR, Mali SN, Raskar SV, Lotlikar OA, Waghmode KT. Efficient Silica-OSO3H (SSA)-Catalyzed One-Pot Multicomponent Synthesis of 1,2,4,5-Tetrasubstituted 1H-Imidazoles: Molecular Docking, Antibacterial Activity, and Plausible Mechanism. Russian Journal of Organic Chemistry. 2024;60(3):530-538. doi:10.1134/s1070428024030229
  • Dziduch K, Janowska S, Andrzejczuk S, et al. Synthesis and Biological Evaluation of New Compounds with Nitroimidazole Moiety. Molecules. 2024;29(13)doi:10.3390/molecules29133023
  • Agili F. Novel Thiazole Derivatives Containing Imidazole and Furan Scaffold: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Evaluation. Molecules. 2024;29(7)doi:10.3390/molecules29071491
  • Mahmoodi NO, Rajabi A, Nyaki HY, Nahzomi HT. Synthesis, Characterization, Molecular Docking, and Investigation of Antibacterial Properties of New Derivatives of 1‐H‐Phenanthro [9,10‐d] Imidazole. Chemistry & Biodiversity. 2024;21(6)doi:10.1002/cbdv.202400325
  • Slassi S, Aarjane M, Amine A. Novel triazole derivatives possessing imidazole: Synthesis, spectroscopic characterization (FT-IR, NMR, UV–Vis), DFT studies and antibacterial in vitro evaluation. Journal of Molecular Structure. 2023;1276doi:10.1016/j.molstruc.2022.134788
  • Liu H, Yang S, Li T, et al. Design, Synthesis and Bioactivity Evaluation of Novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles Containing an Imidazole Fragment as Antibacterial Agents. Molecules. 2023;28(6)doi:10.3390/molecules28062442
  • Xu WB, Meng YQ, Sun J, et al. Synthesis and Antibacterial Activity Evaluation of Imidazole Derivatives Containing 6‐Methylpyridine Moiety. Chemistry & Biodiversity. 2023;20(5)doi:10.1002/cbdv.202300105
  • Saeed A, Soliman AM, Al-Taisan KM, et al. Synthesis and molecular docking of new indeno[1,2-d]imidazole, indeno[1,2-e]triazine, indeno[1,2-c]pyrazole, and indeno[1,2-b]pyrrole polycyclic compounds as antibacterial and antioxidant agents. Journal of Molecular Structure. 2023;1289doi:10.1016/j.molstruc.2023.135763
  • Sudheer Reddy V, Reddy NR, Reddy AV, Padma M, Reddy LK. Synthesis of Some New N-Substituted Imidazole Derivatives and Their In Vitro Antibacterial Investigation. Russian Journal of Bioorganic Chemistry. 2022;48(3):643-650. doi:10.1134/s1068162022030189
  • Poyraz S, Döndaş HA, Sansano JM, et al. N-Benzoylthiourea-pyrrolidine carboxylic acid derivatives bearing an imidazole moiety: Synthesis, characterization, crystal structure, in vitro ChEs inhibition, and antituberculosis, antibacterial, antifungal studies. Journal of Molecular Structure. 2023;1273doi:10.1016/j.molstruc.2022.134303
  • Aziz H, Saeed A, Khan MA, et al. Novel N‐Acyl‐1H‐imidazole‐1‐carbothioamides: Design, Synthesis, Biological and Computational Studies. Chemistry & Biodiversity. 2020;17(3)doi:10.1002/cbdv.201900509
  • Khanage S, Mohite P, Pandhare R. Synthesis and Antimicrobial Evaluation of 4-(4,5-diphenyl-1H-imidazole-2-yl)-2-methoxyphenyl-N-substituted aminoacetate Derivatives. Analytical Chemistry Letters. 2020;10(4):517-523. doi:10.1080/22297928.2020.1838319
  • Choudhari D, Salunke-Gawali S, Chakravarty D, et al. Synthesis and biological activity of imidazole based 1,4-naphthoquinones. New Journal of Chemistry. 2020;44(17):6889-6901. doi:10.1039/c9nj04339j
  • Obalı AY, Akçaalan S, Arslan E, Obalı İ. Antibacterial activities and DNA-cleavage properties of novel fluorescent imidazo-phenanthroline derivatives. Bioorganic Chemistry. 2020;100doi:10.1016/j.bioorg.2020.103885
  • Valls A, Andreu JJ, Falomir E, et al. Imidazole and Imidazolium Antibacterial Drugs Derived from Amino Acids. Pharmaceuticals. 2020;13(12)doi:10.3390/ph13120482
  • Ebenezer O, Awolade P, Koorbanally N, Singh P. New library of pyrazole–imidazo[1,2‐α]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chemical Biology & Drug Design. 2019;95(1):162-173. doi:10.1111/cbdd.13632
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Derleme
Yazarlar

Samet Poyraz 0000-0002-9698-7959

Erken Görünüm Tarihi 6 Aralık 2024
Yayımlanma Tarihi 20 Aralık 2024
Gönderilme Tarihi 18 Eylül 2024
Kabul Tarihi 8 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 3

Kaynak Göster

APA Poyraz, S. (2024). Antimikrobiyal dirençle mücadelede yeni stratejiler: İmidazol içeren moleküllerin antibakteriyel potansiyeli. Mersin Üniversitesi Sağlık Bilimleri Dergisi, 17(3), 496-510.
AMA Poyraz S. Antimikrobiyal dirençle mücadelede yeni stratejiler: İmidazol içeren moleküllerin antibakteriyel potansiyeli. Mersin Univ Saglık Bilim Derg. Aralık 2024;17(3):496-510.
Chicago Poyraz, Samet. “Antimikrobiyal dirençle mücadelede Yeni Stratejiler: İmidazol içeren moleküllerin Antibakteriyel Potansiyeli”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 17, sy. 3 (Aralık 2024): 496-510.
EndNote Poyraz S (01 Aralık 2024) Antimikrobiyal dirençle mücadelede yeni stratejiler: İmidazol içeren moleküllerin antibakteriyel potansiyeli. Mersin Üniversitesi Sağlık Bilimleri Dergisi 17 3 496–510.
IEEE S. Poyraz, “Antimikrobiyal dirençle mücadelede yeni stratejiler: İmidazol içeren moleküllerin antibakteriyel potansiyeli”, Mersin Univ Saglık Bilim Derg, c. 17, sy. 3, ss. 496–510, 2024.
ISNAD Poyraz, Samet. “Antimikrobiyal dirençle mücadelede Yeni Stratejiler: İmidazol içeren moleküllerin Antibakteriyel Potansiyeli”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 17/3 (Aralık 2024), 496-510.
JAMA Poyraz S. Antimikrobiyal dirençle mücadelede yeni stratejiler: İmidazol içeren moleküllerin antibakteriyel potansiyeli. Mersin Univ Saglık Bilim Derg. 2024;17:496–510.
MLA Poyraz, Samet. “Antimikrobiyal dirençle mücadelede Yeni Stratejiler: İmidazol içeren moleküllerin Antibakteriyel Potansiyeli”. Mersin Üniversitesi Sağlık Bilimleri Dergisi, c. 17, sy. 3, 2024, ss. 496-10.
Vancouver Poyraz S. Antimikrobiyal dirençle mücadelede yeni stratejiler: İmidazol içeren moleküllerin antibakteriyel potansiyeli. Mersin Univ Saglık Bilim Derg. 2024;17(3):496-510.

MEÜ Sağlık Bilimleri Dergisi Doç.Dr. Gönül Aslan'ın Editörlüğünde Mersin Üniversitesi Sağlık Bilimleri Enstitüsüne bağlı olarak 2008 yılında yayımlanmaya başlanmıştır. Prof.Dr. Gönül Aslan Mart 2015 tarihinde Başeditörlük görevine Prof.Dr. Caferi Tayyar Şaşmaz'a devretmiştir. 01 Ocak 2023 tarihinde Prof.Dr. C. Tayyar Şaşmaz Başeditörlük görevini Prof.Dr. Özlem İzci Ay'a devretmiştir. 

Yılda üç sayı olarak (Nisan - Ağustos - Aralık) yayımlanan dergi multisektöryal hakemli bir bilimsel dergidir. Dergide araştırma makaleleri yanında derleme, olgu sunumu ve editöre mektup tipinde bilimsel yazılar yayımlanmaktadır. Yayın hayatına başladığı günden beri eposta yoluyla yayın alan ve hem online hem de basılı olarak yayımlanan dergimiz, Mayıs 2014 sayısından itibaren sadece online olarak yayımlanmaya başlamıştır. TÜBİTAK-ULAKBİM Dergi Park ile Nisan 2015 tarihinde yapılan Katılım Sözleşmesi sonrasında online yayın kabul ve değerlendirme sürecine geçmiştir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 16 Kasım 2011'dan beri Türkiye Atıf Dizini tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 2016 birinci sayıdan itibaren ULAKBİM Tıp Veri Tabanı tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 02 Ekim 2019'dan beri DOAJ tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 23 Mart 2021'den beri EBSCO tarafından indekslenmektedir.


Dergimiz açık erişim politikasını benimsemiş olup, dergimizde makale başvuru, değerlendirme ve yayınlanma aşamasında ücret talep edilmemektedir. Dergimizde yayımlanan makalelerin tamamına ücretsiz olarak Arşivden erişilebilmektedir.

154561545815459   

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı  ile lisanslanmıştır.