Derleme
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 15 Sayı: 2, 304 - 310, 25.12.2025
https://doi.org/10.53518/mjavl.1747409

Öz

Kaynakça

  • Alper, D. ve Anbar, A. (2007). Küresel ısınmanın dünya ekonomisine ve Türkiye ekonomisine etkileri. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(4), 15-54.
  • Anonim. (2023). Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023 Syntesis Report. https://www.ipcc.ch/report/ar6/syr/
  • Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C., ... & Pan, G. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global change biology, 22(2), 856-874. https://doi.org/10.1111/gcb.13065
  • DeLucia, E. H., Nabity, P. D., Zavala, J. A., & Berenbaum, M. R. (2012). Climate change: Resetting plant-insect interactions. Plant physiology, 160(4), 1677- 1685. https://doi.org/10.1104/pp.112.204750
  • Ekele, JU, Webster, R., Perez de Heredia, F., Lane, KE, Fadel, A., & Symonds, R.C. (2025). Current impacts of elevated CO2 on crop nutritional quality: a review using wheat as a case study. Stress Biology, 5(1), 34. https://doi.org/10.1007/s44154-025-00217-w
  • Fajer, E. D. (1989). The effects of enriched CO2 atmospheres on plant-insect herbivore interactions: Growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia, 81(4), 514-520. https://doi.org/10.1007/BF00378962
  • Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I., & Anderson, J. T. (2021). Climate change alters plant– herbivore interactions. New Phytologist, 229(4), 1894- 1910. https://doi.org/10.1111/nph.17036
  • Hughes, L., & Bazzaz, F. A. (2001). Effects of elevated CO2 on five plant-aphid interactions. Entomologia Experimentalis et Applicata, 99(1), 87-96. https://doi.org/10.1046/j.1570-7458.2001.00805.x
  • Jin, J., Armstrong, R., & Tang, C. (2019). Impact of elevated CO2 on grain nutrient concentration varies with crops and soils–A long-term FACE study. Science of the Total Environment, 651, 2641-2647. https://doi.org/10.1016/j.scitotenv.2018.10.170
  • Karacaoğlu, M. (2021). Intraspecific variation in the internal transcribed spacer (Its) region of green peach aphid Myzus persicae [(sulzer)(hemiptera: Aphididae)] under elevated atmospheric CO2 pressure. Applied Ecology and Environmental Research, 19(3), 2565-2574.
  • Khan, P., Aziz, T., Jan, R., & Kim, K. M. (2025). Effects of Elevated CO2 on Maize Physiological and Biochemical Processes. Agronomy, 15(1), 202. https://doi.org/10.3390/agronomy15010202
  • Klaiber, J., Najar-Rodriguez, A. J., Dialer, E., & Dorn, S. (2013). Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biological Control, 66(1), 49-55. https://doi.org/10.1016/j.biocontrol.2013.03.006
  • Korkmaz, A. (2021). Farklı sıcaklıklar ve arttırılmış karbondioksit gazı (CO2) düzeyinin şeftali yaprakbiti [Myzus persicae (Sulzer)(Hemiptera: Aphidae)]'nin biyolojisi üzerine etkilerinin araştırılması (Master's thesis, Malatya Turgut Özal Üniversitesi/Lisansüstü Eğitim Enstitüsü/Bitki Koruma Ana Bilim Dalı).
  • Lee, T. D., Tjoelker, M. G., Ellsworth, D. S., & Reich, P. B. (2001). Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist, 150(2), 405-418. https://doi.org/10.1046/j.1469-8137.2001.00095.x
  • Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. elife, 3, e02245. https://doi.org/10.7554/eLife.02245
  • Mohan, J. E., Ziska, L. H., Schlesinger, W. H., Thomas, R. B., Sicher, R. C., George, K., & Clark, J. S. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, 103(24), 9086-9089. https://doi.org/10.1073/pnas.0602392103
  • Moreno-Delafuente, A., Viñuela, E., Fereres, A., Medina, P., & Trębicki, P. (2020). Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects, 11(8), 459. https://doi.org/10.3390/insects11080459
  • Moreno-Delafuente, A., Fereres, A., Vinuela, E., & Medina, P. (2021). Elevated carbon dioxide reduces Aphis gossypii intrinsic increase rates without affecting Aphidius colemani parasitism rate. Biological Control, 163, 104741. https://doi.org/10.1016/j.biocontrol.2021.104741
  • Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., ... & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), 139-142. https://doi.org/10.1038/nature13179
  • Najar-Rodriguez, A. J., Lacorazza, S., Klaiber, J., Avila, G. A., Zhang, J., Ma, C., & Ma, G. (2024). Long₀term effects of elevated CO2 on the nutrition provided to parasitoids by their herbivorous hosts. Physiological Entomology, 49(3), 244-252. https://doi.org/10.1111/phen.12441
  • Oehme, V., Högy, P., Zebitz, C. P. W., & Fangmeier, A. (2013). Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. Journal of Plant Interactions, 8(1), 74-84. https://doi.org/10.1080/17429145.2012.736200
  • O’Connor, R. C., Blumenthal, D. M., Ocheltree, T. W., & Nippert, J. B. (2024). Elevated CO2 counteracts effects of water stress on woody rangeland-encroaching species. Tree Physiology, 44(13), 46-57.
  • Pinto, H., Sharwood, R. E., Tissue, D. T., & Ghannoum, O. (2014). Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2. Journal of Experimental Botany, 65(13), 3669-3681. https://doi.org/10.1093/jxb/eru155
  • Pritchard, J., Griffiths, B., & Hunt, E. J. (2007). Can the plant₀mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biology, 13(8), 1616-1629. https://doi.org/10.1111/j.1365- 2486.2007.01401.x
  • Revelle, R. (1982). Carbon dioxide and world climate. Scientific American, 247(2), 35-43. https://www.jstor.org/stable/24966657
  • Robinson, E. A., Ryan, G. D., & Newman, J. A. (2012). A meta₀analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194(2), 321-336. https://doi.org/10.1111/j.1469- 8137.2012.04074.x
  • Roy, S., Kapoor, R., & Mathur, P. (2024). Revisiting Changes in Growth, Physiology and Stress Responses of Plants under the Effect of Enhanced CO2 and Temperature. Plant and Cell Physiology, 65(1), 4-19. https://doi.org/10.1093/pcp/pcad121
  • Sun, Y. C., Chen, F. J., & Ge, F. (2009). Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi and Schizaphis graminum. Environmental entomology, 38(1), 26-34. https://doi.org/10.1603/022.038.0105
  • Stiling, P., & Cornelissen, T. (2007). How does elevated carbon dioxide (CO2 ) affect plant–herbivore interactions? A field experiment and meta₀analysis of CO2 ₀ mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13(9), 1823-1842. https://doi.org/10.1111/j.1365- 2486.2007.01392.x
  • Welti, E. A. R., Roeder, K. A., De Beurs, K. M., Joern, A., & Kaspari, M. (2020). Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proceedings of the National Academy of Sciences, 117(13), 7271- 7275. https://doi.org/10.1073/pnas.1920012117
  • Yan, H., Guo, H., Sun, Y., & Ge, F. (2020). Plant phenolics mediated bottom₀up effects of elevated CO2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. Insect Science, 27(1), 170-184. https://doi.org/10.1111/1744- 7917.12627
  • Zavala, J. A., Gog, L., & Giacometti, R. (2017). Anthropogenic increase in carbon dioxide modifies plant-insect interactions: Effects of elevated CO2 on plantinsect interactions. Annals of Applied Biology, 170(1), 68-77. https://doi.org/10.1111/aab.12319
  • Ziska, L. H., Blumenthal, D. M., & Franks, S. J. (2019). Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 12(2), 79-88. https://doi.org/10.1017/inp.2019.12

Biological and Ecological Effects of Elevated Carbon Dioxide (CO₂) Levels on Aphids (Aphididae): A Current Review

Yıl 2025, Cilt: 15 Sayı: 2, 304 - 310, 25.12.2025
https://doi.org/10.53518/mjavl.1747409

Öz

Carbon dioxide (CO₂) levels in the atmosphere are rapidly increasing due to human activities; this increase directly affects land ecosystems as well as the climate system. While the greenhouse gas effect of CO₂ provides the temperature balance necessary for life, its increased levels cause changes in plant physiology. Elevated CO₂ promotes plant growth by increasing photosynthesis; however, it decreases the nutritional value of the plant by increasing carbohydrate accumulation and decreasing protein content. These compositional changes directly affect phytophagous insects, especially phloem-feeding aphids (Aphididae). The increase in leaf stiffness, cuticle thickness and secondary metabolite production in plants exposed to carbon dioxide can alter the life cycle and feeding behaviour of aphids. However, these effects vary among species, making generalisations difficult. In this review, the effects of increasing CO₂ levels on the biology and ecology of aphids are examined, and the risks that changes in development time, reproductive capacity, life span and population dynamics may pose for agricultural production and integrated pest management are discussed.

Etik Beyan

This research study was conducted in accordance with research and publication ethics. The scientific and legal responsibility for articles published in MJAVL rests with the authors.

Kaynakça

  • Alper, D. ve Anbar, A. (2007). Küresel ısınmanın dünya ekonomisine ve Türkiye ekonomisine etkileri. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(4), 15-54.
  • Anonim. (2023). Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023 Syntesis Report. https://www.ipcc.ch/report/ar6/syr/
  • Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C., ... & Pan, G. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global change biology, 22(2), 856-874. https://doi.org/10.1111/gcb.13065
  • DeLucia, E. H., Nabity, P. D., Zavala, J. A., & Berenbaum, M. R. (2012). Climate change: Resetting plant-insect interactions. Plant physiology, 160(4), 1677- 1685. https://doi.org/10.1104/pp.112.204750
  • Ekele, JU, Webster, R., Perez de Heredia, F., Lane, KE, Fadel, A., & Symonds, R.C. (2025). Current impacts of elevated CO2 on crop nutritional quality: a review using wheat as a case study. Stress Biology, 5(1), 34. https://doi.org/10.1007/s44154-025-00217-w
  • Fajer, E. D. (1989). The effects of enriched CO2 atmospheres on plant-insect herbivore interactions: Growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia, 81(4), 514-520. https://doi.org/10.1007/BF00378962
  • Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I., & Anderson, J. T. (2021). Climate change alters plant– herbivore interactions. New Phytologist, 229(4), 1894- 1910. https://doi.org/10.1111/nph.17036
  • Hughes, L., & Bazzaz, F. A. (2001). Effects of elevated CO2 on five plant-aphid interactions. Entomologia Experimentalis et Applicata, 99(1), 87-96. https://doi.org/10.1046/j.1570-7458.2001.00805.x
  • Jin, J., Armstrong, R., & Tang, C. (2019). Impact of elevated CO2 on grain nutrient concentration varies with crops and soils–A long-term FACE study. Science of the Total Environment, 651, 2641-2647. https://doi.org/10.1016/j.scitotenv.2018.10.170
  • Karacaoğlu, M. (2021). Intraspecific variation in the internal transcribed spacer (Its) region of green peach aphid Myzus persicae [(sulzer)(hemiptera: Aphididae)] under elevated atmospheric CO2 pressure. Applied Ecology and Environmental Research, 19(3), 2565-2574.
  • Khan, P., Aziz, T., Jan, R., & Kim, K. M. (2025). Effects of Elevated CO2 on Maize Physiological and Biochemical Processes. Agronomy, 15(1), 202. https://doi.org/10.3390/agronomy15010202
  • Klaiber, J., Najar-Rodriguez, A. J., Dialer, E., & Dorn, S. (2013). Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biological Control, 66(1), 49-55. https://doi.org/10.1016/j.biocontrol.2013.03.006
  • Korkmaz, A. (2021). Farklı sıcaklıklar ve arttırılmış karbondioksit gazı (CO2) düzeyinin şeftali yaprakbiti [Myzus persicae (Sulzer)(Hemiptera: Aphidae)]'nin biyolojisi üzerine etkilerinin araştırılması (Master's thesis, Malatya Turgut Özal Üniversitesi/Lisansüstü Eğitim Enstitüsü/Bitki Koruma Ana Bilim Dalı).
  • Lee, T. D., Tjoelker, M. G., Ellsworth, D. S., & Reich, P. B. (2001). Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist, 150(2), 405-418. https://doi.org/10.1046/j.1469-8137.2001.00095.x
  • Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. elife, 3, e02245. https://doi.org/10.7554/eLife.02245
  • Mohan, J. E., Ziska, L. H., Schlesinger, W. H., Thomas, R. B., Sicher, R. C., George, K., & Clark, J. S. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, 103(24), 9086-9089. https://doi.org/10.1073/pnas.0602392103
  • Moreno-Delafuente, A., Viñuela, E., Fereres, A., Medina, P., & Trębicki, P. (2020). Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects, 11(8), 459. https://doi.org/10.3390/insects11080459
  • Moreno-Delafuente, A., Fereres, A., Vinuela, E., & Medina, P. (2021). Elevated carbon dioxide reduces Aphis gossypii intrinsic increase rates without affecting Aphidius colemani parasitism rate. Biological Control, 163, 104741. https://doi.org/10.1016/j.biocontrol.2021.104741
  • Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., ... & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), 139-142. https://doi.org/10.1038/nature13179
  • Najar-Rodriguez, A. J., Lacorazza, S., Klaiber, J., Avila, G. A., Zhang, J., Ma, C., & Ma, G. (2024). Long₀term effects of elevated CO2 on the nutrition provided to parasitoids by their herbivorous hosts. Physiological Entomology, 49(3), 244-252. https://doi.org/10.1111/phen.12441
  • Oehme, V., Högy, P., Zebitz, C. P. W., & Fangmeier, A. (2013). Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. Journal of Plant Interactions, 8(1), 74-84. https://doi.org/10.1080/17429145.2012.736200
  • O’Connor, R. C., Blumenthal, D. M., Ocheltree, T. W., & Nippert, J. B. (2024). Elevated CO2 counteracts effects of water stress on woody rangeland-encroaching species. Tree Physiology, 44(13), 46-57.
  • Pinto, H., Sharwood, R. E., Tissue, D. T., & Ghannoum, O. (2014). Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2. Journal of Experimental Botany, 65(13), 3669-3681. https://doi.org/10.1093/jxb/eru155
  • Pritchard, J., Griffiths, B., & Hunt, E. J. (2007). Can the plant₀mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biology, 13(8), 1616-1629. https://doi.org/10.1111/j.1365- 2486.2007.01401.x
  • Revelle, R. (1982). Carbon dioxide and world climate. Scientific American, 247(2), 35-43. https://www.jstor.org/stable/24966657
  • Robinson, E. A., Ryan, G. D., & Newman, J. A. (2012). A meta₀analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194(2), 321-336. https://doi.org/10.1111/j.1469- 8137.2012.04074.x
  • Roy, S., Kapoor, R., & Mathur, P. (2024). Revisiting Changes in Growth, Physiology and Stress Responses of Plants under the Effect of Enhanced CO2 and Temperature. Plant and Cell Physiology, 65(1), 4-19. https://doi.org/10.1093/pcp/pcad121
  • Sun, Y. C., Chen, F. J., & Ge, F. (2009). Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi and Schizaphis graminum. Environmental entomology, 38(1), 26-34. https://doi.org/10.1603/022.038.0105
  • Stiling, P., & Cornelissen, T. (2007). How does elevated carbon dioxide (CO2 ) affect plant–herbivore interactions? A field experiment and meta₀analysis of CO2 ₀ mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13(9), 1823-1842. https://doi.org/10.1111/j.1365- 2486.2007.01392.x
  • Welti, E. A. R., Roeder, K. A., De Beurs, K. M., Joern, A., & Kaspari, M. (2020). Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proceedings of the National Academy of Sciences, 117(13), 7271- 7275. https://doi.org/10.1073/pnas.1920012117
  • Yan, H., Guo, H., Sun, Y., & Ge, F. (2020). Plant phenolics mediated bottom₀up effects of elevated CO2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. Insect Science, 27(1), 170-184. https://doi.org/10.1111/1744- 7917.12627
  • Zavala, J. A., Gog, L., & Giacometti, R. (2017). Anthropogenic increase in carbon dioxide modifies plant-insect interactions: Effects of elevated CO2 on plantinsect interactions. Annals of Applied Biology, 170(1), 68-77. https://doi.org/10.1111/aab.12319
  • Ziska, L. H., Blumenthal, D. M., & Franks, S. J. (2019). Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 12(2), 79-88. https://doi.org/10.1017/inp.2019.12

Yükseltilmiş Karbondioksit (CO₂) Seviyelerinin Yaprakbitleri (Aphididae) Üzerindeki Biyolojik ve Ekolojik Etkileri: Güncel Bir Derleme

Yıl 2025, Cilt: 15 Sayı: 2, 304 - 310, 25.12.2025
https://doi.org/10.53518/mjavl.1747409

Öz

Atmosferdeki karbondioksit (CO₂) seviyeleri, insan faaliyetleri nedeniyle hızla artmakta; bu artış iklim sistemiyle birlikte kara ekosistemlerini de doğrudan etkilemektedir. Karbondioksitin sera gazı etkisi, yaşam için gerekli sıcaklık dengesini sağlarken, artan seviyeleri bitki fizyolojisinde değişimlere neden olmaktadır. Yükselen CO₂ seviyesi, fotosentezi artırarak bitki büyümesini teşvik edmekte; ancak karbonhidrat birikimini artırıp protein içeriğini azaltarak bitkinin besin değerini düşürmektedir. Bu bileşim değişiklikleri, özellikle floemden beslenen yaprakbitleri (Hemiptera: Aphididae) gibi fitofag böcekleri doğrudan etkilemektedir. Karbondioksite maruz kalan bitkilerde yaprak sertliği, kütikula kalınlığı ve ikincil metabolit üretimindeki artış, yaprak bitlerinin yaşam döngüsü ve beslenme davranışını değiştirebilir. Ancak bu etkiler, türler arasında farklılık gösterdiğinden genelleme yapmak zordur. Bu derlemede, artan CO₂ seviyelerinin yaprakbitlerinin biyolojisi ve ekolojisi üzerindeki etkileri incelenmiş; gelişim süresi, üreme kapasitesi, yaşam süresi ve popülasyon dinamiklerindeki değişimlerin tarımsal üretim ve entegre zararlı yönetimi açısından yaratabileceği riskler tartışılmıştır.

Etik Beyan

Bu araştırma çalışması, araştırma ve yayınlama etiğine uygun bir şekilde yürütülmüştür. MJAVL'de yayınlanan makalelerin bilimsel ve hukuki sorumluluğu yazarlara aittir.

Kaynakça

  • Alper, D. ve Anbar, A. (2007). Küresel ısınmanın dünya ekonomisine ve Türkiye ekonomisine etkileri. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(4), 15-54.
  • Anonim. (2023). Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023 Syntesis Report. https://www.ipcc.ch/report/ar6/syr/
  • Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C., ... & Pan, G. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global change biology, 22(2), 856-874. https://doi.org/10.1111/gcb.13065
  • DeLucia, E. H., Nabity, P. D., Zavala, J. A., & Berenbaum, M. R. (2012). Climate change: Resetting plant-insect interactions. Plant physiology, 160(4), 1677- 1685. https://doi.org/10.1104/pp.112.204750
  • Ekele, JU, Webster, R., Perez de Heredia, F., Lane, KE, Fadel, A., & Symonds, R.C. (2025). Current impacts of elevated CO2 on crop nutritional quality: a review using wheat as a case study. Stress Biology, 5(1), 34. https://doi.org/10.1007/s44154-025-00217-w
  • Fajer, E. D. (1989). The effects of enriched CO2 atmospheres on plant-insect herbivore interactions: Growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia, 81(4), 514-520. https://doi.org/10.1007/BF00378962
  • Hamann, E., Blevins, C., Franks, S. J., Jameel, M. I., & Anderson, J. T. (2021). Climate change alters plant– herbivore interactions. New Phytologist, 229(4), 1894- 1910. https://doi.org/10.1111/nph.17036
  • Hughes, L., & Bazzaz, F. A. (2001). Effects of elevated CO2 on five plant-aphid interactions. Entomologia Experimentalis et Applicata, 99(1), 87-96. https://doi.org/10.1046/j.1570-7458.2001.00805.x
  • Jin, J., Armstrong, R., & Tang, C. (2019). Impact of elevated CO2 on grain nutrient concentration varies with crops and soils–A long-term FACE study. Science of the Total Environment, 651, 2641-2647. https://doi.org/10.1016/j.scitotenv.2018.10.170
  • Karacaoğlu, M. (2021). Intraspecific variation in the internal transcribed spacer (Its) region of green peach aphid Myzus persicae [(sulzer)(hemiptera: Aphididae)] under elevated atmospheric CO2 pressure. Applied Ecology and Environmental Research, 19(3), 2565-2574.
  • Khan, P., Aziz, T., Jan, R., & Kim, K. M. (2025). Effects of Elevated CO2 on Maize Physiological and Biochemical Processes. Agronomy, 15(1), 202. https://doi.org/10.3390/agronomy15010202
  • Klaiber, J., Najar-Rodriguez, A. J., Dialer, E., & Dorn, S. (2013). Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biological Control, 66(1), 49-55. https://doi.org/10.1016/j.biocontrol.2013.03.006
  • Korkmaz, A. (2021). Farklı sıcaklıklar ve arttırılmış karbondioksit gazı (CO2) düzeyinin şeftali yaprakbiti [Myzus persicae (Sulzer)(Hemiptera: Aphidae)]'nin biyolojisi üzerine etkilerinin araştırılması (Master's thesis, Malatya Turgut Özal Üniversitesi/Lisansüstü Eğitim Enstitüsü/Bitki Koruma Ana Bilim Dalı).
  • Lee, T. D., Tjoelker, M. G., Ellsworth, D. S., & Reich, P. B. (2001). Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist, 150(2), 405-418. https://doi.org/10.1046/j.1469-8137.2001.00095.x
  • Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. elife, 3, e02245. https://doi.org/10.7554/eLife.02245
  • Mohan, J. E., Ziska, L. H., Schlesinger, W. H., Thomas, R. B., Sicher, R. C., George, K., & Clark, J. S. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences, 103(24), 9086-9089. https://doi.org/10.1073/pnas.0602392103
  • Moreno-Delafuente, A., Viñuela, E., Fereres, A., Medina, P., & Trębicki, P. (2020). Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects, 11(8), 459. https://doi.org/10.3390/insects11080459
  • Moreno-Delafuente, A., Fereres, A., Vinuela, E., & Medina, P. (2021). Elevated carbon dioxide reduces Aphis gossypii intrinsic increase rates without affecting Aphidius colemani parasitism rate. Biological Control, 163, 104741. https://doi.org/10.1016/j.biocontrol.2021.104741
  • Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., ... & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), 139-142. https://doi.org/10.1038/nature13179
  • Najar-Rodriguez, A. J., Lacorazza, S., Klaiber, J., Avila, G. A., Zhang, J., Ma, C., & Ma, G. (2024). Long₀term effects of elevated CO2 on the nutrition provided to parasitoids by their herbivorous hosts. Physiological Entomology, 49(3), 244-252. https://doi.org/10.1111/phen.12441
  • Oehme, V., Högy, P., Zebitz, C. P. W., & Fangmeier, A. (2013). Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. Journal of Plant Interactions, 8(1), 74-84. https://doi.org/10.1080/17429145.2012.736200
  • O’Connor, R. C., Blumenthal, D. M., Ocheltree, T. W., & Nippert, J. B. (2024). Elevated CO2 counteracts effects of water stress on woody rangeland-encroaching species. Tree Physiology, 44(13), 46-57.
  • Pinto, H., Sharwood, R. E., Tissue, D. T., & Ghannoum, O. (2014). Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2. Journal of Experimental Botany, 65(13), 3669-3681. https://doi.org/10.1093/jxb/eru155
  • Pritchard, J., Griffiths, B., & Hunt, E. J. (2007). Can the plant₀mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biology, 13(8), 1616-1629. https://doi.org/10.1111/j.1365- 2486.2007.01401.x
  • Revelle, R. (1982). Carbon dioxide and world climate. Scientific American, 247(2), 35-43. https://www.jstor.org/stable/24966657
  • Robinson, E. A., Ryan, G. D., & Newman, J. A. (2012). A meta₀analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194(2), 321-336. https://doi.org/10.1111/j.1469- 8137.2012.04074.x
  • Roy, S., Kapoor, R., & Mathur, P. (2024). Revisiting Changes in Growth, Physiology and Stress Responses of Plants under the Effect of Enhanced CO2 and Temperature. Plant and Cell Physiology, 65(1), 4-19. https://doi.org/10.1093/pcp/pcad121
  • Sun, Y. C., Chen, F. J., & Ge, F. (2009). Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi and Schizaphis graminum. Environmental entomology, 38(1), 26-34. https://doi.org/10.1603/022.038.0105
  • Stiling, P., & Cornelissen, T. (2007). How does elevated carbon dioxide (CO2 ) affect plant–herbivore interactions? A field experiment and meta₀analysis of CO2 ₀ mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13(9), 1823-1842. https://doi.org/10.1111/j.1365- 2486.2007.01392.x
  • Welti, E. A. R., Roeder, K. A., De Beurs, K. M., Joern, A., & Kaspari, M. (2020). Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proceedings of the National Academy of Sciences, 117(13), 7271- 7275. https://doi.org/10.1073/pnas.1920012117
  • Yan, H., Guo, H., Sun, Y., & Ge, F. (2020). Plant phenolics mediated bottom₀up effects of elevated CO2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. Insect Science, 27(1), 170-184. https://doi.org/10.1111/1744- 7917.12627
  • Zavala, J. A., Gog, L., & Giacometti, R. (2017). Anthropogenic increase in carbon dioxide modifies plant-insect interactions: Effects of elevated CO2 on plantinsect interactions. Annals of Applied Biology, 170(1), 68-77. https://doi.org/10.1111/aab.12319
  • Ziska, L. H., Blumenthal, D. M., & Franks, S. J. (2019). Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 12(2), 79-88. https://doi.org/10.1017/inp.2019.12
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarımda Entomoloji
Bölüm Derleme
Yazarlar

Şeyma Kaya Korkmaz 0009-0009-5154-4095

Mehmet Karacaoğlu 0000-0003-1837-9381

Gönderilme Tarihi 21 Temmuz 2025
Kabul Tarihi 21 Kasım 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Kaya Korkmaz, Ş., & Karacaoğlu, M. (2025). Yükseltilmiş Karbondioksit (CO₂) Seviyelerinin Yaprakbitleri (Aphididae) Üzerindeki Biyolojik ve Ekolojik Etkileri: Güncel Bir Derleme. Manas Journal of Agriculture Veterinary and Life Sciences, 15(2), 304-310. https://doi.org/10.53518/mjavl.1747409