Derleme
BibTex RIS Kaynak Göster

The Blood Brain Barrier and Its Modulation

Yıl 2020, Cilt: 10 Sayı: 2, 115 - 121, 28.12.2020

Öz

The blood – brain barrier (BBB) is a complex multicellular structure, which composites of endothelial cells, pericytes, immune cells, astrocytes, and basement membrane, also known as the “neurovascular unit”. BBB protects the central nervous system (CNS) from the toxins and pathogens in systemic circulation. Endothelial cells are the main barrier component because of the absence of fenestrae, extremely low levels of transport vesicles, and the presence tight junctions (TJ’s), which restricts paracellular transport. Also, the presence of defense mechanisms like efflux pumps and influx pumps which are members of superfamily of membrane transporters, makes BBB impossible for penetration. These pumps regulate the entry of ions and nutrients from blood to brain. The unique nature of BBB at the same time restricts the access of a large number of therapeutic agents more than 98% of all CNS drugs into the brain. Getting drugs across the BBB is a very active field of research from past few centuries to these days. Despite of intensive research, thousands of peoples are suffering from CNS diseases, such as neurodegenerative disorders, brain tumors, HIV encephalopathy and epilepsy. Scientists from all over the world are investigating a various strategy for enhancing drug delivery through the BBB. Current methods for enhancing drug delivery classified into two groups: invasive and non-invasive methods. While invasive methods are including neurosurgical-based methods like convection-enhanced delivery, intracerebroventricular injections, intracerebral implants and also methods for disruption BBB by opening TJ`s with ultrasound and iontophoresis, non-invasive methods include using nanoparticles, Trojan horses, prodrugs technologies and inhibition of efflux transporters, Alternative technics like intranasal drug delivery are also the non-invasive methods for BBB drug delivery.

Teşekkür

I would like to thank my advisor Prof. Dr. Kamil ÜNEY.

Kaynakça

  • Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiol Dis, 37(1), 13-25. doi:10.1016/j.nbd.2009.07.030
  • Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature reviews neuroscience, 7(1), 41.
  • András, I. E., & Toborek, M. (2016). Extracellular vesicles of the blood-brain barrier. Tissue Barriers, 4(1), e1131804. doi:10.1080/21688370.2015.1131804
  • Aryal, M., Arvanitis, C. D., Alexander, P. M., & McDannold, N. (2014). Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Advanced drug delivery reviews, 72, 94-109.
  • Benarroch, E. E. (2011). Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology, 77(12), 1198-1204. doi:10.1212/WNL.0b013e31822f04a0
  • Cm de Lange, E. (2012). The Physiological Characteristics and Transcytosis Mechanisms of the Blood-Brain Barrier (BBB). Current pharmaceutical biotechnology, 13(12), 2319-2327. doi:10.2174/138920112803341860
  • Daneman, R., & Prat, A. (2015). The blood–brain barrier. Cold Spring Harbor perspectives in biology, 7(1), a020412.
  • De Bock, M., Vandenbroucke, R. E., Decrock, E., Culot, M., Cecchelli, R., & Leybaert, L. (2014). A new angle on blood–CNS interfaces: A role for connexins? FEBS letters, 588(8), 1259-1270.
  • Deracinois, B., Lenfant, A. M., Dehouck, M. P., & Flahaut, C. (2015). Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain. Subcell Biochem, 76, 125-151. doi:10.1007/978-94-017-7197-9_7
  • Fakhoury, M., Takechi, R., & Al-Salami, H. (2015). Drug permeation across the blood-brain barrier: applications of Nanotechnology. British Journal of Medicine and Medical Research, 6(6), 547-556.
  • Gabathuler, R. (2010). Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis, 37(1), 48-57. doi:10.1016/j.nbd.2009.07.028
  • Girouard, H., & Iadecola, C. (2006). Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985), 100(1), 328-335. doi:10.1152/japplphysiol.00966.2005
  • Gültürk, S., Imir, G., & Tuncer, E. (2007). The Blood-Brain Barrier. Erciyes Medical Journal, 29(2), 147-154.
  • Hawkins, B. T., & Davis, T. P. (2005). The blood-brain barrier/neurovascular unit in health and disease. Pharmacological reviews, 57(2), 173-185.
  • Kasinathan, N., Jagani, H. V., Alex, A. T., Volety, S. M., & Rao, J. V. (2015). Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv, 22(3), 243-257. doi:10.3109/10717544.2013.878858
  • Laquintana, V., Trapani, A., Denora, N., Wang, F., Gallo, J. M., & Trapani, G. (2009). New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv, 6(10), 1017-1032. doi:10.1517/17425240903167942
  • Loch-Neckel, G., & Koepp, J. (2010). The blood-brain barrier and drug delivery in the central nervous system. Rev Neurol, 51(3), 165-174.
  • Lu, C.-T., Zhao, Y.-Z., Wong, H. L., Cai, J., Peng, L., & Tian, X.-Q. (2014). Current approaches to enhance CNS delivery of drugs across the brain barriers. International journal of nanomedicine, 9, 2241.
  • Nicchia, G. P., Nico, B., Camassa, L. M., Mola, M. G., Loh, N., Dermietzel, R., . . . Frigeri, A. (2004). The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models. Neuroscience, 129(4), 935-945. doi:10.1016/j.neuroscience.2004.07.055
  • Pardridge, W. M. (2006). Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol, 6(5), 494-500. doi:10.1016/j.coph.2006.06.001
  • Pardridge, W. M. (2007). Blood–brain barrier delivery. Drug discovery today, 12(1-2), 54-61.
  • Sa-Pereira, I., Brites, D., & Brito, M. A. (2012). Neurovascular unit: a focus on pericytes. Mol Neurobiol, 45(2), 327-347. doi:10.1007/s12035-012-8244-2
  • Saunders, N. R., Habgood, M. D., Mollgard, K., & Dziegielewska, K. M. (2016). The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000Res, 5. doi:10.12688/f1000research.7378.1
  • Serlin, Y., Shelef, I., Knyazer, B., & Friedman, A. (2015). Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol, 38, 2-6. doi:10.1016/j.semcdb.2015.01.002
  • Spuch, C., & Navarro, C. (2010). Transport mechanisms at the blood-cerebrospinal-fluid barrier: role of megalin (LRP2). Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 4(3), 190-205.
  • Tait, M. J., Saadoun, S., Bell, B. A., & Papadopoulos, M. C. (2008). Water movements in the brain: role of aquaporins. Trends Neurosci, 31(1), 37-43. doi:10.1016/j.tins.2007.11.003
  • Zhou, Y., Peng, Z., Seven, E. S., & Leblanc, R. M. (2018). Crossing the blood-brain barrier with nanoparticles. Journal of controlled release, 270, 290-303.

Kan Beyin Bariyeri ve İlaç Geçiş Modulasyonu

Yıl 2020, Cilt: 10 Sayı: 2, 115 - 121, 28.12.2020

Öz

Kan-beyin bariyeri (KBB) “nörovasküler ünite” olarak da bilinen endotelyal hücreler, perisitler, bağışıklık hücreleri, astrositler ve bazal membrandan oluşan karmaşık ve çok hücreli yapıdır. KBB merkezi sinir sistemi (MSS)’ni sistemik dolaşımdaki çeşitli toksinlerden ve patojenlerden korumaktadır. Endotel hücreleri, porların yokluğu, çok düşük seviyede taşıyıcı veziküllerin olması ve paraselüler geçişi kısıtlayan sıkı bağlantıların (TJ’ların) bulunması nedeniyle, bariyerin ana bileşenidir. Ayrıca, KBB’den maddelerin geçişinde rol oynayan taşıyıcılar olan ATP Bağlı Kaset süper ailesinin efluks mekanizmalarının ve Solüt Taşıyıcılar (SLC) süper ailesinin influks mekanizmalarının varlığı çoğu molekülün beyin dokusuna girişini daha da sınırlamaktadır. Bu mekanizmalar sistemik dolaşımdan beyine iyonların ve besin maddelerinin girişini düzenlemektedir. KBB’nin kısıtlayıcı eşsiz doğası aynı zamanda çok sayıda terapötik maddelerin, MSS ilaçlarının %98'inden fazlasının beyine erişimini kısıtlamaktadır. KBB'yi geçerek beyin dokusuna erişmek, bilim adamları için son birkaç yüzyıldan günümüze en büyük zorluklardan biri olmuştur. Yoğun araştırmalara rağmen binlerce insan nörodejeneratif bozukluklar, beyin tümörleri, HIV ensefalopati ve epilepsi gibi MSS hastalıklarından muzdarip durumdadırlar. Bütün dünyada, bilim adamları KBB’yi geçerek ilaç uygulama yöntemleri hakkında yoğun araştırmalar yapmaktadır. Yoğun olarak kullanılan ilaç uygulama yöntemleri non-invaziv ve invaziv yöntemler olarak 2 grupta toplanmaktadır. İnvaziv yöntemler nöroşirurji temelinde kafatasında delik açılarak, konveksiyonla arttırılmış difüzyon (KAG), intraserebro ventriküler (İSV) enjeksiyon, beyin içi implantasyon (IK), TJ’ların ultrason dalgalarıyla ve iyontoforezle açılarak KBB’nin bozulması tekniklerini içerirken, non invazif yöntemler nano parçacıkların, truva atı metodunun kullanılması, ön ilaç uygulaması ve efluks taşıyıcıların inhibisyonu metotlarını içermektedir. Burun içi ilaç gönderimi gibi alternatif teknikler de mevcuttur.

Kaynakça

  • Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiol Dis, 37(1), 13-25. doi:10.1016/j.nbd.2009.07.030
  • Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature reviews neuroscience, 7(1), 41.
  • András, I. E., & Toborek, M. (2016). Extracellular vesicles of the blood-brain barrier. Tissue Barriers, 4(1), e1131804. doi:10.1080/21688370.2015.1131804
  • Aryal, M., Arvanitis, C. D., Alexander, P. M., & McDannold, N. (2014). Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Advanced drug delivery reviews, 72, 94-109.
  • Benarroch, E. E. (2011). Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology, 77(12), 1198-1204. doi:10.1212/WNL.0b013e31822f04a0
  • Cm de Lange, E. (2012). The Physiological Characteristics and Transcytosis Mechanisms of the Blood-Brain Barrier (BBB). Current pharmaceutical biotechnology, 13(12), 2319-2327. doi:10.2174/138920112803341860
  • Daneman, R., & Prat, A. (2015). The blood–brain barrier. Cold Spring Harbor perspectives in biology, 7(1), a020412.
  • De Bock, M., Vandenbroucke, R. E., Decrock, E., Culot, M., Cecchelli, R., & Leybaert, L. (2014). A new angle on blood–CNS interfaces: A role for connexins? FEBS letters, 588(8), 1259-1270.
  • Deracinois, B., Lenfant, A. M., Dehouck, M. P., & Flahaut, C. (2015). Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain. Subcell Biochem, 76, 125-151. doi:10.1007/978-94-017-7197-9_7
  • Fakhoury, M., Takechi, R., & Al-Salami, H. (2015). Drug permeation across the blood-brain barrier: applications of Nanotechnology. British Journal of Medicine and Medical Research, 6(6), 547-556.
  • Gabathuler, R. (2010). Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis, 37(1), 48-57. doi:10.1016/j.nbd.2009.07.028
  • Girouard, H., & Iadecola, C. (2006). Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985), 100(1), 328-335. doi:10.1152/japplphysiol.00966.2005
  • Gültürk, S., Imir, G., & Tuncer, E. (2007). The Blood-Brain Barrier. Erciyes Medical Journal, 29(2), 147-154.
  • Hawkins, B. T., & Davis, T. P. (2005). The blood-brain barrier/neurovascular unit in health and disease. Pharmacological reviews, 57(2), 173-185.
  • Kasinathan, N., Jagani, H. V., Alex, A. T., Volety, S. M., & Rao, J. V. (2015). Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv, 22(3), 243-257. doi:10.3109/10717544.2013.878858
  • Laquintana, V., Trapani, A., Denora, N., Wang, F., Gallo, J. M., & Trapani, G. (2009). New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv, 6(10), 1017-1032. doi:10.1517/17425240903167942
  • Loch-Neckel, G., & Koepp, J. (2010). The blood-brain barrier and drug delivery in the central nervous system. Rev Neurol, 51(3), 165-174.
  • Lu, C.-T., Zhao, Y.-Z., Wong, H. L., Cai, J., Peng, L., & Tian, X.-Q. (2014). Current approaches to enhance CNS delivery of drugs across the brain barriers. International journal of nanomedicine, 9, 2241.
  • Nicchia, G. P., Nico, B., Camassa, L. M., Mola, M. G., Loh, N., Dermietzel, R., . . . Frigeri, A. (2004). The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models. Neuroscience, 129(4), 935-945. doi:10.1016/j.neuroscience.2004.07.055
  • Pardridge, W. M. (2006). Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol, 6(5), 494-500. doi:10.1016/j.coph.2006.06.001
  • Pardridge, W. M. (2007). Blood–brain barrier delivery. Drug discovery today, 12(1-2), 54-61.
  • Sa-Pereira, I., Brites, D., & Brito, M. A. (2012). Neurovascular unit: a focus on pericytes. Mol Neurobiol, 45(2), 327-347. doi:10.1007/s12035-012-8244-2
  • Saunders, N. R., Habgood, M. D., Mollgard, K., & Dziegielewska, K. M. (2016). The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000Res, 5. doi:10.12688/f1000research.7378.1
  • Serlin, Y., Shelef, I., Knyazer, B., & Friedman, A. (2015). Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol, 38, 2-6. doi:10.1016/j.semcdb.2015.01.002
  • Spuch, C., & Navarro, C. (2010). Transport mechanisms at the blood-cerebrospinal-fluid barrier: role of megalin (LRP2). Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 4(3), 190-205.
  • Tait, M. J., Saadoun, S., Bell, B. A., & Papadopoulos, M. C. (2008). Water movements in the brain: role of aquaporins. Trends Neurosci, 31(1), 37-43. doi:10.1016/j.tins.2007.11.003
  • Zhou, Y., Peng, Z., Seven, E. S., & Leblanc, R. M. (2018). Crossing the blood-brain barrier with nanoparticles. Journal of controlled release, 270, 290-303.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Derleme
Yazarlar

Aidai Zhunushova 0000-0002-5331-7648

Yayımlanma Tarihi 28 Aralık 2020
Gönderilme Tarihi 16 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 2

Kaynak Göster

APA Zhunushova, A. (2020). Kan Beyin Bariyeri ve İlaç Geçiş Modulasyonu. Manas Journal of Agriculture Veterinary and Life Sciences, 10(2), 115-121.
AMA Zhunushova A. Kan Beyin Bariyeri ve İlaç Geçiş Modulasyonu. MJAVL. Aralık 2020;10(2):115-121.
Chicago Zhunushova, Aidai. “Kan Beyin Bariyeri Ve İlaç Geçiş Modulasyonu”. Manas Journal of Agriculture Veterinary and Life Sciences 10, sy. 2 (Aralık 2020): 115-21.
EndNote Zhunushova A (01 Aralık 2020) Kan Beyin Bariyeri ve İlaç Geçiş Modulasyonu. Manas Journal of Agriculture Veterinary and Life Sciences 10 2 115–121.
IEEE A. Zhunushova, “Kan Beyin Bariyeri ve İlaç Geçiş Modulasyonu”, MJAVL, c. 10, sy. 2, ss. 115–121, 2020.
ISNAD Zhunushova, Aidai. “Kan Beyin Bariyeri Ve İlaç Geçiş Modulasyonu”. Manas Journal of Agriculture Veterinary and Life Sciences 10/2 (Aralık 2020), 115-121.
JAMA Zhunushova A. Kan Beyin Bariyeri ve İlaç Geçiş Modulasyonu. MJAVL. 2020;10:115–121.
MLA Zhunushova, Aidai. “Kan Beyin Bariyeri Ve İlaç Geçiş Modulasyonu”. Manas Journal of Agriculture Veterinary and Life Sciences, c. 10, sy. 2, 2020, ss. 115-21.
Vancouver Zhunushova A. Kan Beyin Bariyeri ve İlaç Geçiş Modulasyonu. MJAVL. 2020;10(2):115-21.