Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Ketencik Genotiplerinde Farklı Tuzluluk Seviyelerinin Agronomik Özelliklere Etkisi

Yıl 2023, Cilt: 13 Sayı: 2, 119 - 125, 22.12.2023
https://doi.org/10.53518/mjavl.1343969

Öz

Ketencik (Camelina sativa L.), Brassicaceae familyasına ait bir yağ bitkisidir. Bununla birlikte, tuzluluk, yüksek sıcaklık ve kuraklık gibi abiyotik stres faktörlerine karşı etkili bir yapıya sahiptir. Bu çalışma, farklı ketencik genotipleri ve çeşitlerine farklı tuzluluk konsantrasyonlarının uygulanması sonucu agronomik özelliklerdeki değişimleri incelemek amacıyla yapılmıştır. Deneme materyali olarak 3 ketencik genotipi (PI-650142, Ames-304269 ve Russian) ve 1 ketencik çeşidi (Arslanbey) kullanılmıştır. Deneme tesadüf bloklarına göre 4 tekrarlı olarak gerçekleştirilmiştir ve 3 farklı NaCl konsantrasyonu (0, 140 ve 280 mM) uygulanmıştır. Bitkiler tomurcuklanma döneminden önce hasat edilmiştir. İncelenen özellikler arasında istatistiksel olarak önemli farklılıklar gözlenmiştir. Tuz konsantrasyon düzeyi arttıkça bitki boyu, yaprak sayısı, yaprak kuru ağırlığı, sap kuru ağırlığı ve bitki kuru ağırlığının azaldığı; sarı yaprak sayısının ise arttığı belirlenmiştir. Tuzlu koşullarda ketencik genotipleri arasında gelişme açısından önemli farklılıklar olduğunu söylemek mümkündür. Ames-304269 genotipinin incelenen parametreler açısından daha üstün sonuçlar ortaya çıkardığı belirlenmiştir. Ketencik bitkilerine uygulanan 140 mM tuz konsantrasyonun agronomik özellikleri yaklaşık %50 oranında azalttığı ve 280 mM tuz konsantrasyonun ciddi verim kayıpları ve ölümcül sonuçları ortaya çıkarabileceği tespit edilmiştir. En düşük tuza tolerans indeksi her iki NaCl konsantrasyonunda Arslanbey genotipinden elde edilmiştir. Bu durum Arslanbey çeşidinin tuz stresine karşı yüksek düzeyde hassas olduğunu göstermiştir. Ketencik bitkisinin yetiştirilmesinde yüksek tuzlu koşullarda ortaya çıkan yetersiz fotosentez ve hormon dengesindeki bozukluklar büyümelerini sınırlayabilir. Araştırmada incelenen parametreler, bitkinin tuzluluk koşullarında sergilediği sonuçları tespit etmek için yetersizdir. Bitkilerin morfolojik ve biyokimyasal özellikleri birlikte göz önünde bulundurularak tuza karşı stres tepkilerinin belirlenmesi ileriki araştırmalarda daha yararlı olacaktır.

Kaynakça

  • Anonymous (2023a). https://www.tuik.gov.tr/ Erişim tarihi: June 17, 2023.
  • Anonymous (2023b). http://faostat.fao.org, Erişim tarihi: June 15, 2023.
  • Arvas, Y. E. & Kocaçalışkan, İ. (2020). Genetiği değiştirilmiş bitkilerin biyogüvenlik riskleri. Türk Doğa ve Fen Dergisi , 9 (2) , 201-210 . https://doi.org/10.46810/tdfd.804336
  • Aziz, E.E., Al-Amiera, H., & Craker, L.E., (2008). Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Journal of Herbs Spices Medicinal Plants, (14), 3-9. https://doi.org/10.1080/10496470802341375
  • Bartels D., & Sunkar R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences., (24), 23- 58. https://doi.org/10.1080/07352680590910410
  • Çulha, Ş., & Çakırlar, H., (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, (11), 11-34.
  • Erdem, T., Arın, L., Erdem, Y., Polat, S., Deveci, M., Okursoy, H., & Gültaş, H.T., (2010). Yield and quality response of drip irrigated broccoli (Brassica oleracea L. var. italica) under different irrigation regimes, nitrogen applications and cultivation periods, Agricultural Water Management, 97 (5), 681-688.
  • Göre, M., (2023). Salt sensitivity and some physiological and morphological adaptation mechanisms to salt stress in camelina. Journal of Elementology, 28 (1), 78-87. https://doi.org/10.5601/jelem.2022.27.4.2346
  • Gugel R.K., & Falk K.C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86(4), 1047-1058. https://doi.org/10.4141/P04-081
  • Hoagland, D.R., Arnon, D.I., (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347 (2nd edit).
  • Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., & Khalighi, A., (2010). The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Applied Sciences Journal., 11(11), 1403-1407.
  • Kuşvuran, Ş., (2012). Effects of drought and salt stresses on growth stomatal conductance leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research., 7(5), 775- 781. https://doi.org/10.5897/AJAR11.1783
  • Kuşvuran, A., Nazlı, R.I., & Kuşvuran, Ş. (2015). The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Türk Tarım ve Doğa Bilimleri Dergisi 2(1): 78-84, 2015.
  • Liu, J., Gao, H., Wang, X., Zheng, Q., Wang, C., Wang, X., & Wang, Q. (2014). Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Plant Biology, 16(2), 440-450. https://doi.org/10.1111/plb.12052
  • Mahajan, S., & Tuteja, N., (2005). Cold, salinity and drought stress: an overview, Archives of Biochemistry and Biophysics, (444), 139-158.
  • Miyamoto S., Oster M.F., Rostle C.T., & Lenn E.G. (2012). Salt tolerance of oilseed crops during establishment. Journal of Arid Land, (22), 147-151.
  • Negrão, S., Schmöckel, S. M., & Tester, M. J. A. O. B. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11.
  • Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
  • Razeq F.M., Kosma D.K., Rowland O., & Molina I. (2014). Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry, (106), 188-96. https://doi.org/10.1016/j.phytochem.2014.06.018
  • Russo R., & Reggiani R. (2015). Seed Protein in Camelina sativa (L.) Crantz var. calena. International Journal of Plant & Soil Science, 8(2), 1-6. https://doi.org/10.9734/IJPSS/2015/19003
  • Türkeş, M., (1994). Artan sera etkisinin Türkiye üzerindeki etkileri, TÜBİTAK Bilim ve Teknik Dergisi, (321), 71-79.
  • Yılmaz, E., Tuna, A.L., & Bürün, B., (2011). Bitkilerin tuz stresine karşı geliştirdikleri tolerans stratejileri. C.B.Ü. Fen Bilimleri Dergisi, (7), 47–66.

The Effect of Different Salinity Levels on Agronomic Parameters in Some Camelina Genotypes

Yıl 2023, Cilt: 13 Sayı: 2, 119 - 125, 22.12.2023
https://doi.org/10.53518/mjavl.1343969

Öz

Camelina (Camelina sativa L.) is an oilseed plant belonging to the Brassicaceae family. However, it possesses an effective resistance mechanism against abiotic stress factors such as salinity, high temperature, and drought. This study aimed to investigate alterations in agronomic characteristics resulting from the application of varying salinity concentrations to different camelina genotypes and cultivars. Three camelina genotypes (PI-650142, Ames-304269, and Russian) and one camelina cultivar (Arslanbey) were utilized as experimental materials. The experiment was conducted with four replicates in a randomized block design, employing three different NaCl concentrations (0, 140, and 280 mM). Plant harvesting occurred prior to the budding stage. Statistically significant variations were observed among the assessed parameters. With an increase in salt concentration, there was a decrease in plant height, leaf count, dry leaf weight, stem dry weight, and overall plant dry weight. Additionally, an elevation in the number of yellowing leaves was noted. Substantial differences in development among camelina genotypes in saline conditions were evident. Notably, the Ames-304269 genotype exhibited superior outcomes in the investigated parameters. It has been determined that 140 mM salt concentration applied to camelina plants reduces agronomic properties by approximately 50%-, and 280-mM salt concentration may cause serious yield losses and fatal consequences. The lowest salt tolerance index was obtained from Arslanbey genotype at both NaCl concentrations. This showed that Arslanbey variety was highly sensitive to salt stress. Inadequate photosynthesis and disorders in hormone balance that occur in high salt conditions when growing camelina plants may limit their growth. The parameters examined in the research are insufficient to detect the results exhibited by the plant under salinity conditions. Determining the stress responses of plants to salt by considering their morphological and biochemical properties together will be more useful in future research.

Kaynakça

  • Anonymous (2023a). https://www.tuik.gov.tr/ Erişim tarihi: June 17, 2023.
  • Anonymous (2023b). http://faostat.fao.org, Erişim tarihi: June 15, 2023.
  • Arvas, Y. E. & Kocaçalışkan, İ. (2020). Genetiği değiştirilmiş bitkilerin biyogüvenlik riskleri. Türk Doğa ve Fen Dergisi , 9 (2) , 201-210 . https://doi.org/10.46810/tdfd.804336
  • Aziz, E.E., Al-Amiera, H., & Craker, L.E., (2008). Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Journal of Herbs Spices Medicinal Plants, (14), 3-9. https://doi.org/10.1080/10496470802341375
  • Bartels D., & Sunkar R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences., (24), 23- 58. https://doi.org/10.1080/07352680590910410
  • Çulha, Ş., & Çakırlar, H., (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, (11), 11-34.
  • Erdem, T., Arın, L., Erdem, Y., Polat, S., Deveci, M., Okursoy, H., & Gültaş, H.T., (2010). Yield and quality response of drip irrigated broccoli (Brassica oleracea L. var. italica) under different irrigation regimes, nitrogen applications and cultivation periods, Agricultural Water Management, 97 (5), 681-688.
  • Göre, M., (2023). Salt sensitivity and some physiological and morphological adaptation mechanisms to salt stress in camelina. Journal of Elementology, 28 (1), 78-87. https://doi.org/10.5601/jelem.2022.27.4.2346
  • Gugel R.K., & Falk K.C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86(4), 1047-1058. https://doi.org/10.4141/P04-081
  • Hoagland, D.R., Arnon, D.I., (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347 (2nd edit).
  • Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K., & Khalighi, A., (2010). The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Applied Sciences Journal., 11(11), 1403-1407.
  • Kuşvuran, Ş., (2012). Effects of drought and salt stresses on growth stomatal conductance leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research., 7(5), 775- 781. https://doi.org/10.5897/AJAR11.1783
  • Kuşvuran, A., Nazlı, R.I., & Kuşvuran, Ş. (2015). The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Türk Tarım ve Doğa Bilimleri Dergisi 2(1): 78-84, 2015.
  • Liu, J., Gao, H., Wang, X., Zheng, Q., Wang, C., Wang, X., & Wang, Q. (2014). Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola. Plant Biology, 16(2), 440-450. https://doi.org/10.1111/plb.12052
  • Mahajan, S., & Tuteja, N., (2005). Cold, salinity and drought stress: an overview, Archives of Biochemistry and Biophysics, (444), 139-158.
  • Miyamoto S., Oster M.F., Rostle C.T., & Lenn E.G. (2012). Salt tolerance of oilseed crops during establishment. Journal of Arid Land, (22), 147-151.
  • Negrão, S., Schmöckel, S. M., & Tester, M. J. A. O. B. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11.
  • Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22, 4056-4075.
  • Razeq F.M., Kosma D.K., Rowland O., & Molina I. (2014). Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry, (106), 188-96. https://doi.org/10.1016/j.phytochem.2014.06.018
  • Russo R., & Reggiani R. (2015). Seed Protein in Camelina sativa (L.) Crantz var. calena. International Journal of Plant & Soil Science, 8(2), 1-6. https://doi.org/10.9734/IJPSS/2015/19003
  • Türkeş, M., (1994). Artan sera etkisinin Türkiye üzerindeki etkileri, TÜBİTAK Bilim ve Teknik Dergisi, (321), 71-79.
  • Yılmaz, E., Tuna, A.L., & Bürün, B., (2011). Bitkilerin tuz stresine karşı geliştirdikleri tolerans stratejileri. C.B.Ü. Fen Bilimleri Dergisi, (7), 47–66.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Agronomi, Endüstri Bitkileri
Bölüm Araştırma Makalesi
Yazarlar

Merve Göre 0000-0001-9350-5910

Yayımlanma Tarihi 22 Aralık 2023
Gönderilme Tarihi 15 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 2

Kaynak Göster

APA Göre, M. (2023). Bazı Ketencik Genotiplerinde Farklı Tuzluluk Seviyelerinin Agronomik Özelliklere Etkisi. Manas Journal of Agriculture Veterinary and Life Sciences, 13(2), 119-125. https://doi.org/10.53518/mjavl.1343969