BibTex RIS Kaynak Göster

Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques

Yıl 2014, Cilt: 2 Sayı: 2, 46 - 58, 01.10.2014

Öz

Electrochemical reduction mechanism of some salicylaldimine podands derived from salicylaldehyde and diamines having general formula of HO-C6H4-CH=N-R-N=CH-C6H4-OH [R = ‒, (CH2)6, (CH2CH2)2NH, (CH2CH2OCH2)2], namely N,N’-bis(salicylidene)-diamine (BSA), N,N’-bis(salicylidene)-1,6-hexanediamine (BSH), 1,7-bis(2-hydroxybenzyl)-1,4,7-triazaheptane (BST), 1,10-bis(2-hydroxybenzyl)-4,7-dioxa–1,10-diazadecane (BDD), respectively, were investigated by using various electrochemical techniques in 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) in acetonitrile (MeCN) at a glassy carbon (GC) electrode. Schiff base podand derivatives show cyclic voltammetric (CV) irreversible one-electron reduction peaks at about -1.82 V, -2.20 V, -2.14 V and -2.10 V at a scan rate of 0.1 V/s at GC electrode (vs. Ag/Ag ), respectively. The reaction mechanism was investigated by CV and decided to be electrochemical-chemical (EC) route and this mechanism was verified by digital simulation. The number of electrons transferred (n) and diffusion coefficients (D) of the compounds were determined using an ultramicroelectrode (UME) by CV, chronoamperometry (CA) and hydrodynamic voltammetry.

Kaynakça

  • [1] Boschke EL, (1981). Topics in Current Chemistry, “Host-Guest Complex”, Volumes I-III, ed., Springer Verlag, Berlin, , 1982-1984.
  • [2] Steed JW, Atwood JL, 2002. Supramolecular Chemistry, Chichester, UK: J. Wiley and Sons.
  • [3] Holm RH, O’Connor MJ, (1971). The Stereochemistry of Bis-Chelate Metal(II) Complexes. Progresses in Inorganic Chemistry, 14: 241-401.
  • [4] Costamagna J, Vargas J, Lattorre R, Alvarado A, Mena G, (1992). Coordination Compounds of Copper, Nickel and Iron with Schiff Bases Derived from Hydroxynaphthaldehydes and Salicylaldehydes. Coordination Chemistry Reviews, 119: 67-88.
  • [5] Garnovskii AD, Nivorozhkin AL, Minkin VI, (1993). Ligand Environment and The Structure of Schiff Base Adducts and Tetracoordinated Metal-Chelates. Coordination Chemistry Reviews, 126: 1-69.
  • [6] Guerriero P, (1995). From Mononuclear to Polynuclear Macrocyclic or Macroacyclic Complexes. Coordination Chemistry Reviews, 139: 17-243.
  • [7] Luo H, Franwick PE, Green MA, (1998). Synthesis and Structure of a Novel Cu(II) Complex with a Monoprotic Tetradentate Schiff Base Ligand. Inorganic Chemistry, 37: 1127-1130.
  • [8] Chen D, Martel AE, (1987). Dioxygen Affinities of Synthetic Cobalt Schiff Base Complexes. Inorganic Chemistry, 26: 1026-1030.
  • [9] El-Naggar AM, Ahmed FSM, Badie MF, (1981). Synthesis of Some 2-(N-Protected or Free Aminoacyl or N-tosyltripeptide)-Aminophenazines, Aminonaphthophenazines and 4- (N-protected or Free Aminoacyl or N-tosyltripeptide)aminophenazone Derivatives. Journal of Heterocyclic Chemistry, 18: 91-94.
  • [10] Karia FD, Parsania PH, (1999). Synthesis, Biological and Thermal Properties of Schiff bases of Bisphenol-C. Asian Journal of Chemistry 11: 991-995.
  • [11] Cheng K, Zheng Q-Z, Y Qian, Shi L, Zhao J, Zhu H-L, (2009). Synthesis, Antibacterial Activities and Molecular Docking Studies of Peptide and Schiff Bases as Targeted Antibiotics. Bioorganic and Medicinal Chemistry, 17: 7861-7871.
  • [12] Singh WM, Dash BC, (1988). Synthesis of Some New Schiff Bases Containing Thiazole and Oxazole Nuclei and Their Fungicidal Activity. Pesticides, 22(11): 33-37.
  • [13] Desai SB, Desai PB, Desai KR, (2001). Synthesis of some Schiff bases, thiazolidones, and azetidinones derived from 2,6-diaminobenzo[1,2-d:4,5-d’]bisthiazole and their anticancer Activities. Heterocyclic Communications, 7:83-90.
  • [14] Samadhiya S, Halve A, Orient. (2001). Synthetic Utility of Schiff Bases as Potential Herbicidal Agents. Journal of Chemistry, 17: 119-122.
  • [15] Hasanov R, Bilge S, Bilgiç S, Gece G, Kılıç Z, (2010). Experimental and Theoretical Calculations on Corrosion Inhibition of Steel in 1 M H2SO4 by Crown Type Polyethers. Corrosion Science 52(3): 984-990.
  • [16] Asan A, Kabasakaloğlu M, Işıklan M, Kılıç Z, (2005). Corrosion Inhibition of Brass in Presence of Terdentate Ligands in Chloride Solution. Corrosion Science, 47(6): 1534- 1544.
  • [17] Mashhadizadeh MH, Sheikhshoaie I, (2003). Mercury(II) Ion-selective Polymeric Membrane Sensor Based on a Recently Synthesized Schiff Base. Talanta, 60. 73-80.
  • [18] Shamspur T, Mashhadizadeh MH, Sheikhshoaie I, (2005), Flame Atomic Absorption Spectrometric Determination of Silver Ion After Preconcentration on Octadecyl Silica Membrane Disk Modified with Bis[5-((4-nitrophenyl)azosalicylaldehyde)] as a New Schiff Base Ligand. Journal of Analytical Atomic Spectroscopy. 18: 1407-1410.
  • [19] Shamspur T, Mashhadizadeh MH, Sheikhshoaie I, (2005). Flame Atomic Absorption Spectroscopy (FAAS) Determination of Iron(III) After Preconcentration on to Modified Analcime Zeolite with 5-((4-Nitrophenylazo)-N-(2 ,4 -Dimethoxyphenyl))Salicylaldimine by Column Method. J. Anal. Atom. Spec. 20: 476-478.
  • [20] Burger MT, Armstrong A, Guarnieri F, McDonald D, Clark Q, Stil W, (1994). Free Energy Calculations in Molecular Design: Predictions by Theory and Reality by Experiment with Enantioselective Podand Ionophores. Journal of American Chemical Society, 94: 3593- 3594.
  • [21] Wang PF, Hong ZR, Xie ZY, Tong SW, Wong O, Lee CS, Wong NB, Hung LS, Lee ST, (2003). A Bis-salicylaldiminato Schiff Base and Its Zinc Complex as New Highly Fluorescent Red Dopants for High Performance Organic Electroluminescence Devices. Chemical Communication, 19(4): 1664-1665.
  • [22] Yu G, Liu YQ, Song YR, Wu X, Zhu DB, (2001). A New Blue Light-emitting Material. Synthetic Metals, 117: 211-214.
  • [23] Ziolek, M, Filipczak K, Maciejewski A, (2008). Spectroscopic and Photophysical Properties of Salicylaldehyde Azine (SAA) as a Photochromic Schiff Base Suitable for Heterogeneous Studies. Chemical Physics Letters, 464(4-6): 181-186.
  • [24] Wang F, Qin L, Fan M, (1993). Transient Absorption Spectra and Photochromic Mechanism of Schiff Bases. Research on Chemical Intermediates, 19(4): 299-306.
  • [25] Hadjoudis E, Mavridis IM, (2004). Photochromism and Thermochromism of Schiff Bases in the Solid State: Structural Aspects. Chemical Society Reviews, 33: 579-588.
  • [26] Zhao J, Zhao B, Liu J, Xu W, Wang Z, (2001). Spectroscopy Study on the Photochromism of Schiff Bases N,N′-bis(salicylidene)-1,2-diaminoethane and N,N′-bis(salicylidene)-1,6- hexanediamine. Spectrochimica Acta A, 57: 149-154.
  • [27] Chantarasiri N, Tuntulani T, Tongroung P, Seangprasertkit-Magee R, Wannatong W, (2000). New metal-containing epoxy polymers from diglycidyl ether of bisphenol A and tetradentate Schiff base metal complexes. European Polymer Journal, 36: 695-702.
Yıl 2014, Cilt: 2 Sayı: 2, 46 - 58, 01.10.2014

Öz

HO-C6H4-CH=N-R-N=CH-C6H4-OH [R = ‒, (CH2)6, (CH2CH2)2NH, (CH2CH2OCH2)2], adlandırması N,N’-bis(salisiliden)-diamin (BSA), N,N’-bis(salisiliden)-1,6-hekzandiamin (BSH), 1,7-bis(2-hidroksilbenzil)-1,4,7-triazaheptan (BST), 1,10-bis(2-hidroksibenzil)-4,7dioxa–1,10-diazadekan (BDD) olan salisilaldehit ve diaminlerden sentezlenen bazı salisilaldimin podandların bazı elektrokimyasal tekniklerle asetonitrilde hazırlanmış 0,1 M tetrabutilamonyum tetrafloroborat (TBATFB) ortamında ve camsı karbon elektrot kullanılarak elektrokimyasal indirgenme mekanizması araştırılmıştır. Dönüşümlü voltametri tekniği kullanılarak 0.1 V tarama hızında (Ag/Ag+ yardımcı elektrot kullanılarak) ve camsı karbon elektrotta Schiff baz türevlerine ait tersinmez bir elektronlu indirgenme pikleri sırasıyla, yaklaşık olarak -1.82 V, -2.20 V, -2.14 V ve -2.10 V olarak bulunmuştur. Reaksiyon mekanizmaları EC olduğuna karar verilmiş ve EC mekanizması dijital simülasyon ile kanıtlanmıştır. Bileşiklerin elektron aktarım sayısı (n) ve difüzyon katsayısı (D); ultramikroelektrot kullanılarak, dönüşümlü voltametri (CV), kronoamperometri (CA) ve hidrodinamik voltametri teknikleri ile elde edilmiştir. podand, dijital simülasyon, EC mekanizması, dönüşümlü voltametri, hidrodinamik voltametri

Kaynakça

  • [1] Boschke EL, (1981). Topics in Current Chemistry, “Host-Guest Complex”, Volumes I-III, ed., Springer Verlag, Berlin, , 1982-1984.
  • [2] Steed JW, Atwood JL, 2002. Supramolecular Chemistry, Chichester, UK: J. Wiley and Sons.
  • [3] Holm RH, O’Connor MJ, (1971). The Stereochemistry of Bis-Chelate Metal(II) Complexes. Progresses in Inorganic Chemistry, 14: 241-401.
  • [4] Costamagna J, Vargas J, Lattorre R, Alvarado A, Mena G, (1992). Coordination Compounds of Copper, Nickel and Iron with Schiff Bases Derived from Hydroxynaphthaldehydes and Salicylaldehydes. Coordination Chemistry Reviews, 119: 67-88.
  • [5] Garnovskii AD, Nivorozhkin AL, Minkin VI, (1993). Ligand Environment and The Structure of Schiff Base Adducts and Tetracoordinated Metal-Chelates. Coordination Chemistry Reviews, 126: 1-69.
  • [6] Guerriero P, (1995). From Mononuclear to Polynuclear Macrocyclic or Macroacyclic Complexes. Coordination Chemistry Reviews, 139: 17-243.
  • [7] Luo H, Franwick PE, Green MA, (1998). Synthesis and Structure of a Novel Cu(II) Complex with a Monoprotic Tetradentate Schiff Base Ligand. Inorganic Chemistry, 37: 1127-1130.
  • [8] Chen D, Martel AE, (1987). Dioxygen Affinities of Synthetic Cobalt Schiff Base Complexes. Inorganic Chemistry, 26: 1026-1030.
  • [9] El-Naggar AM, Ahmed FSM, Badie MF, (1981). Synthesis of Some 2-(N-Protected or Free Aminoacyl or N-tosyltripeptide)-Aminophenazines, Aminonaphthophenazines and 4- (N-protected or Free Aminoacyl or N-tosyltripeptide)aminophenazone Derivatives. Journal of Heterocyclic Chemistry, 18: 91-94.
  • [10] Karia FD, Parsania PH, (1999). Synthesis, Biological and Thermal Properties of Schiff bases of Bisphenol-C. Asian Journal of Chemistry 11: 991-995.
  • [11] Cheng K, Zheng Q-Z, Y Qian, Shi L, Zhao J, Zhu H-L, (2009). Synthesis, Antibacterial Activities and Molecular Docking Studies of Peptide and Schiff Bases as Targeted Antibiotics. Bioorganic and Medicinal Chemistry, 17: 7861-7871.
  • [12] Singh WM, Dash BC, (1988). Synthesis of Some New Schiff Bases Containing Thiazole and Oxazole Nuclei and Their Fungicidal Activity. Pesticides, 22(11): 33-37.
  • [13] Desai SB, Desai PB, Desai KR, (2001). Synthesis of some Schiff bases, thiazolidones, and azetidinones derived from 2,6-diaminobenzo[1,2-d:4,5-d’]bisthiazole and their anticancer Activities. Heterocyclic Communications, 7:83-90.
  • [14] Samadhiya S, Halve A, Orient. (2001). Synthetic Utility of Schiff Bases as Potential Herbicidal Agents. Journal of Chemistry, 17: 119-122.
  • [15] Hasanov R, Bilge S, Bilgiç S, Gece G, Kılıç Z, (2010). Experimental and Theoretical Calculations on Corrosion Inhibition of Steel in 1 M H2SO4 by Crown Type Polyethers. Corrosion Science 52(3): 984-990.
  • [16] Asan A, Kabasakaloğlu M, Işıklan M, Kılıç Z, (2005). Corrosion Inhibition of Brass in Presence of Terdentate Ligands in Chloride Solution. Corrosion Science, 47(6): 1534- 1544.
  • [17] Mashhadizadeh MH, Sheikhshoaie I, (2003). Mercury(II) Ion-selective Polymeric Membrane Sensor Based on a Recently Synthesized Schiff Base. Talanta, 60. 73-80.
  • [18] Shamspur T, Mashhadizadeh MH, Sheikhshoaie I, (2005), Flame Atomic Absorption Spectrometric Determination of Silver Ion After Preconcentration on Octadecyl Silica Membrane Disk Modified with Bis[5-((4-nitrophenyl)azosalicylaldehyde)] as a New Schiff Base Ligand. Journal of Analytical Atomic Spectroscopy. 18: 1407-1410.
  • [19] Shamspur T, Mashhadizadeh MH, Sheikhshoaie I, (2005). Flame Atomic Absorption Spectroscopy (FAAS) Determination of Iron(III) After Preconcentration on to Modified Analcime Zeolite with 5-((4-Nitrophenylazo)-N-(2 ,4 -Dimethoxyphenyl))Salicylaldimine by Column Method. J. Anal. Atom. Spec. 20: 476-478.
  • [20] Burger MT, Armstrong A, Guarnieri F, McDonald D, Clark Q, Stil W, (1994). Free Energy Calculations in Molecular Design: Predictions by Theory and Reality by Experiment with Enantioselective Podand Ionophores. Journal of American Chemical Society, 94: 3593- 3594.
  • [21] Wang PF, Hong ZR, Xie ZY, Tong SW, Wong O, Lee CS, Wong NB, Hung LS, Lee ST, (2003). A Bis-salicylaldiminato Schiff Base and Its Zinc Complex as New Highly Fluorescent Red Dopants for High Performance Organic Electroluminescence Devices. Chemical Communication, 19(4): 1664-1665.
  • [22] Yu G, Liu YQ, Song YR, Wu X, Zhu DB, (2001). A New Blue Light-emitting Material. Synthetic Metals, 117: 211-214.
  • [23] Ziolek, M, Filipczak K, Maciejewski A, (2008). Spectroscopic and Photophysical Properties of Salicylaldehyde Azine (SAA) as a Photochromic Schiff Base Suitable for Heterogeneous Studies. Chemical Physics Letters, 464(4-6): 181-186.
  • [24] Wang F, Qin L, Fan M, (1993). Transient Absorption Spectra and Photochromic Mechanism of Schiff Bases. Research on Chemical Intermediates, 19(4): 299-306.
  • [25] Hadjoudis E, Mavridis IM, (2004). Photochromism and Thermochromism of Schiff Bases in the Solid State: Structural Aspects. Chemical Society Reviews, 33: 579-588.
  • [26] Zhao J, Zhao B, Liu J, Xu W, Wang Z, (2001). Spectroscopy Study on the Photochromism of Schiff Bases N,N′-bis(salicylidene)-1,2-diaminoethane and N,N′-bis(salicylidene)-1,6- hexanediamine. Spectrochimica Acta A, 57: 149-154.
  • [27] Chantarasiri N, Tuntulani T, Tongroung P, Seangprasertkit-Magee R, Wannatong W, (2000). New metal-containing epoxy polymers from diglycidyl ether of bisphenol A and tetradentate Schiff base metal complexes. European Polymer Journal, 36: 695-702.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA26GM27JE
Bölüm Araştırma Makalesi
Yazarlar

A. Solak Bu kişi benim

A. İsbir-turan Bu kişi benim

A. Natsagdorj Bu kişi benim

S. Koçak Bu kişi benim

Z. Kılıç Bu kişi benim

Yayımlanma Tarihi 1 Ekim 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 2 Sayı: 2

Kaynak Göster

APA Solak, A., İsbir-turan, A., Natsagdorj, A., Koçak, S., vd. (2014). Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques. MANAS Journal of Engineering, 2(2), 46-58.
AMA Solak A, İsbir-turan A, Natsagdorj A, Koçak S, Kılıç Z. Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques. MJEN. Ekim 2014;2(2):46-58.
Chicago Solak, A., A. İsbir-turan, A. Natsagdorj, S. Koçak, ve Z. Kılıç. “Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques”. MANAS Journal of Engineering 2, sy. 2 (Ekim 2014): 46-58.
EndNote Solak A, İsbir-turan A, Natsagdorj A, Koçak S, Kılıç Z (01 Ekim 2014) Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques. MANAS Journal of Engineering 2 2 46–58.
IEEE A. Solak, A. İsbir-turan, A. Natsagdorj, S. Koçak, ve Z. Kılıç, “Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques”, MJEN, c. 2, sy. 2, ss. 46–58, 2014.
ISNAD Solak, A. vd. “Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques”. MANAS Journal of Engineering 2/2 (Ekim 2014), 46-58.
JAMA Solak A, İsbir-turan A, Natsagdorj A, Koçak S, Kılıç Z. Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques. MJEN. 2014;2:46–58.
MLA Solak, A. vd. “Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques”. MANAS Journal of Engineering, c. 2, sy. 2, 2014, ss. 46-58.
Vancouver Solak A, İsbir-turan A, Natsagdorj A, Koçak S, Kılıç Z. Reduction Mechanism Investigation Of Some Schiff Base Podand Derivatives At Glassy Carbon Electrode By Using Electrochemical Techniques. MJEN. 2014;2(2):46-58.

Manas Journal of Engineering 

16155