Araştırma Makalesi
BibTex RIS Kaynak Göster

İş Sağlığı ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi ve Bir Uygulama

Yıl 2019, , 1831 - 1853, 27.04.2019
https://doi.org/10.33206/mjss.465681

Öz

İş sağlığı ve güvenliği
alanında risk analizi yapmak amacıyla tehlikeli durumları ve riskleri tespit
ederek, bunları bir metodolojisi içerisinde ele alan bir risk analizi yapabilmek,
sağlıklı ve mutlu bir çalışma ortamının temel prensiplerinden biridir.

Kurum ve kuruluşlarda
yapılan risk değerlendirmelerin çeşitlendirilmesi ve olaylara farklı
yöntemlerle bakılması riski en aza indirecek etkendir. Bu nedenle bu çalışmada,
DEMATEL ve ARAS yöntemleri risk analizine uyarlanarak yeni bir yaklaşım önerilmiştir.





Bu çalışmanın amacı, bir kamu kuruluşunun araçlarının  bakım-onarımlarının yapıldığı kademede iş
sağlığı ve güvenliği için en fazla riski oluşturan risk faktörlerinin
önceliklendirilmesi ve bu risklerin önlenebilmesi için alınabilecek tedbirlerin
belirlenerek, kamu kurumuna rehberlik edilebilmesidir.

Kaynakça

  • Acuner, O., & Çebi, S. (2016). An effective risk-preventive model proposal for occupational accidents at shipyards. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 67(1), 67-84.
  • Akyüz, E. (2017). A marine accident analysing model to evaluate potential operational causes in cargo ships. Safety science, 92, 17-25.
  • Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1-13.
  • Bilir, N. (2016). İş sağlığı ve güvenliği profili : Türkiye, Uluslararası Çalışma Örgütü, ILO Türkiye Ofisi, Ankara: ILO. https://www.csgb.gov.tr/media/4578/kitap09.pdf
  • Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402.
  • Dadelo, S., Turskis, Z., Zavadskas, E. K., & Dadeliene, R. (2012). Multiple criteria assessment of elite security personal on the basis of ARAS and expert methods. Economic Computation and Economic Cybernetics Studies and Research, 46(4), 65-88. Germany.
  • Debnath, J., Biswas, A., Sivan, P., Sen, K. N., & Sahu, S. (2016). Fuzzy inference model for assessing occupational risks in construction sites. International Journal of Industrial Ergonomics, 55, 114-128.
  • Demirdöğen, O., Erdal, H., & Akbaba, A. İ. (2018). The analysis of factors that affect innovation performance of logistics enterprises in Turkey. In German-Turkish Perspectives on IT and Innovation Management (pp. 143-164). Springer Gabler, Wiesbaden.
  • Dey, S., Kumar, A., Ray, A., & Pradhan, B. B. (2012). Supplier selection: integrated theory using DEMATEL and quality function deployment methodology. Procedia Engineering, 38, 3560-3565.
  • Diehl, D., & Spinler, S. (2013). Defining a common ground for supply chain risk management–A case study in the fast-moving consumer goods industry. International Journal of Logistics Research and Applications, 16(4), 311-327.
  • Dong, Q., & Cooper, O. (2016). An orders-of-magnitude AHP supply chain risk assessment framework. International Journal of Production Economics, 182, 144-156.
  • Gül, M., & Güneri, A. F. (2016). A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry. Journal of Loss Prevention in the Process Industries, 40, 89-100.
  • Erdal, H. (2017). Tedarik zinciri ağında riskin yönetimi: tedarik yönlü bir karar destek sistemi tasarımı, (Yayımlanmamış Doktora Tezi), Atatürk Üniversitesi Sosyal Bilimler Enstitüsü, Erzurum.
  • Erdal, H. (2018). Lojistik Strateji Oluşturulmasına Etki Eden Faktörlerin Nicel Analizi. içinde Lojistik Stratejiler (Yalın, Çevik ve İşbirlikli), (pp.85-116), Bursa: Ekin Yayınevi.
  • Eurostat, Avrupa İstatistik Ofisi. (2015).https://ec.europa.eu/eurostat/statistics-explained/index.php/ Accidents_at_work_statistics).
  • Fattahi, R., & Khalilzadeh, M. (2018). Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Safety Science, 102, 290-300.
  • Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: a literature review. International Journal of Production Research, 53(16), 5031-5069.
  • ILO, International Labour Organization.(2014). Creating Safe and Healthy Workplaces for All, https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/---publ/documents/publication/ wcms_ 305423.pdf
  • Kern, D., Moser, R., Hartmann, E., & Moder, M. (2012). Supply risk management: model development and empirical analysis. International Journal of Physical Distribution & Logistics Management, 42(1), 60-82.
  • Klinke, A., & Renn, O. (2002). A New Approach to Risk Evaluation and Management: Risk‐Based, Precaution‐Based, and Discourse‐Based Strategies 1. Risk Analysis: An International Journal, 22(6), 1071-1094.
  • Kokangül, A., Polat, U., & Dağsuyu, C. (2017). A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Safety science, 91, 24-32.
  • Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Systems with Applications, 65, 398-422.
  • Lin, C. J., & Wu, W. W. (2008). A causal analytical method for group decision-making under fuzzy environment. Expert Systems with Applications, 34(1), 205-213.
  • Liu, H. C., Li, Z., Song, W., & Su, Q. (2017). Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Transactions on Reliability, 66(4), 1058-1072.
  • Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. Journal of Loss Prevention in the Process Industries, 24(5), 477-523.
  • Meknatjoo, M., & Omidvari, M. (2015). Safety risk assessment by using William–Fine method with compilation fuzzy DEMATEL in machining process. Iran Occupational Health, 12(5), 31-42.
  • Menteş, A., Akyıldız, H., Yetkin, M., & Türkoğlu, N. (2015). A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey. Safety science, 79, 1-10.
  • Othman, M. R., Idris, R., Hassim, M. H., & Ibrahim, W. H. W. (2016). Prioritizing HAZOP analysis using analytic hierarchy process (AHP). Clean Technologies and Environmental Policy, 18(5), 1345-1360.
  • Pinto, A., Nunes, I.L., & Ribeiro, R.A. (2011). Occupational risk assessment in construction industry–Overview and reflection. Safety Science, 49(5), 616-624.
  • Rezaee, M. J., Salimi, A., & Yousefi, S. (2017). Identifying and managing failures in stone processing industry using cost-based FMEA. The International Journal of Advanced Manufacturing Technology, 88(9-12), 3329-3342.
  • SGK, Sosyal Güvenlik Kurumu. (2018). SGK İstatistik Yıllıkları. http://www.sgk.gov.tr/wps/portal/ sgk/tr/kurumsal/istatistik/sgk_istatistik_yilliklari
  • Shariati, S., Yazdani-Chamzini, A., Salsani, A., & Tamosaitiene, J. (2014). Proposing a new model for waste dump site selection: Case study of Ayerma Phosphate Mine. Inzinerine Ekonomika-Engineering Economics, 25(4), 410-419.
  • Sodhi, M. S., Son, B. G., & Tang, C. S. (2012). Researchers' perspectives on supply chain risk management. Production and operations management, 21(1), 1-13.
  • Tixier, J., Dusserre, G., Salvi, O., & Gaston, D. (2002). Review of 62 risk analysis methodologies of industrial plants. Journal of Loss Prevention in the process industries, 15(4), 291-303.
  • TMMOB, Makine Mühendisleri Odası. (2018). Oda Raporu: İşçi Sağlığı ve İş Güvenliği. Güncellenmiş 8.Baskı, Yayın No: MMO-689, Ankara.
  • Verma, S., & Chaudhari, S. (2016). Highlights from the literature on risk assessment techniques adopted in the mining industry: a review of past contributions, recent developments and future scope. International Journal of Mining Science and Technology, 26(4), 691-702.
  • Wang, Q., Wang, H., & Qi, Z. (2016). An application of nonlinear fuzzy analytic hierarchy process in safety evaluation of coal mine. Safety science, 86, 78-87.
  • WHO, Dünya Sağlık Örgütü. (2018). Occupational Health. http://www.who.int/topics/occupational_health/en/
  • Yazdi, M. (2017). Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. Journal of Failure Analysis and Prevention, 17(4), 756-764.
  • Yılmaz, N., & Şenol, M. B. (2017). İş sağlığı ve güvenliği risk değerlendirme süreci için bulanık çok kriterli bir model ve uygulaması. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(1), 77-87.
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decisionmaking. Technological and Economic Development of Economy, 16(2), 159-172.
  • Zhang, F., Rahman, A., Goh, M., Ignatius, J., & Ng, P. S. (2017). The State of the Art in FAHP in Risk Assessment. In Fuzzy Analytic Hierarchy Process (pp. 33-66). Chapman and Hall/CRC.
  • Zhou, J. L., Bai, Z. H., & Sun, Z. Y. (2014). A hybrid approach for safety assessment in high-risk hydropower-construction-project work systems. Safety Science, 64, 163-172.

Dematel-Aras Based Risk Assessment Methodology for Occupational Health and Safety and an Application

Yıl 2019, , 1831 - 1853, 27.04.2019
https://doi.org/10.33206/mjss.465681

Öz

It is one of the basic principles of a healthy and happy working environment to identify the treaty situations and risks, and to analyze them in a methodology in the field of occupational health and safety. Diversification of risk assessments conducted at institutions and organizations and looking at events in different ways are vital for minimizing the risk. Therefore, in this study, DEMATEL and ARAS methods were adapted to the risk analysis and a new approach was proposed. The aim of this study is to prioritize the risk factors that constitute the highest level of risk for occupational health and safety in the garage of an public institution where the maintenance and repair of the vehicles are conducted, and to determine the measures that can be taken to prevent these risks and to provide guidance to the public institution.

Kaynakça

  • Acuner, O., & Çebi, S. (2016). An effective risk-preventive model proposal for occupational accidents at shipyards. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 67(1), 67-84.
  • Akyüz, E. (2017). A marine accident analysing model to evaluate potential operational causes in cargo ships. Safety science, 92, 17-25.
  • Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1-13.
  • Bilir, N. (2016). İş sağlığı ve güvenliği profili : Türkiye, Uluslararası Çalışma Örgütü, ILO Türkiye Ofisi, Ankara: ILO. https://www.csgb.gov.tr/media/4578/kitap09.pdf
  • Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402.
  • Dadelo, S., Turskis, Z., Zavadskas, E. K., & Dadeliene, R. (2012). Multiple criteria assessment of elite security personal on the basis of ARAS and expert methods. Economic Computation and Economic Cybernetics Studies and Research, 46(4), 65-88. Germany.
  • Debnath, J., Biswas, A., Sivan, P., Sen, K. N., & Sahu, S. (2016). Fuzzy inference model for assessing occupational risks in construction sites. International Journal of Industrial Ergonomics, 55, 114-128.
  • Demirdöğen, O., Erdal, H., & Akbaba, A. İ. (2018). The analysis of factors that affect innovation performance of logistics enterprises in Turkey. In German-Turkish Perspectives on IT and Innovation Management (pp. 143-164). Springer Gabler, Wiesbaden.
  • Dey, S., Kumar, A., Ray, A., & Pradhan, B. B. (2012). Supplier selection: integrated theory using DEMATEL and quality function deployment methodology. Procedia Engineering, 38, 3560-3565.
  • Diehl, D., & Spinler, S. (2013). Defining a common ground for supply chain risk management–A case study in the fast-moving consumer goods industry. International Journal of Logistics Research and Applications, 16(4), 311-327.
  • Dong, Q., & Cooper, O. (2016). An orders-of-magnitude AHP supply chain risk assessment framework. International Journal of Production Economics, 182, 144-156.
  • Gül, M., & Güneri, A. F. (2016). A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry. Journal of Loss Prevention in the Process Industries, 40, 89-100.
  • Erdal, H. (2017). Tedarik zinciri ağında riskin yönetimi: tedarik yönlü bir karar destek sistemi tasarımı, (Yayımlanmamış Doktora Tezi), Atatürk Üniversitesi Sosyal Bilimler Enstitüsü, Erzurum.
  • Erdal, H. (2018). Lojistik Strateji Oluşturulmasına Etki Eden Faktörlerin Nicel Analizi. içinde Lojistik Stratejiler (Yalın, Çevik ve İşbirlikli), (pp.85-116), Bursa: Ekin Yayınevi.
  • Eurostat, Avrupa İstatistik Ofisi. (2015).https://ec.europa.eu/eurostat/statistics-explained/index.php/ Accidents_at_work_statistics).
  • Fattahi, R., & Khalilzadeh, M. (2018). Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Safety Science, 102, 290-300.
  • Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: a literature review. International Journal of Production Research, 53(16), 5031-5069.
  • ILO, International Labour Organization.(2014). Creating Safe and Healthy Workplaces for All, https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/---publ/documents/publication/ wcms_ 305423.pdf
  • Kern, D., Moser, R., Hartmann, E., & Moder, M. (2012). Supply risk management: model development and empirical analysis. International Journal of Physical Distribution & Logistics Management, 42(1), 60-82.
  • Klinke, A., & Renn, O. (2002). A New Approach to Risk Evaluation and Management: Risk‐Based, Precaution‐Based, and Discourse‐Based Strategies 1. Risk Analysis: An International Journal, 22(6), 1071-1094.
  • Kokangül, A., Polat, U., & Dağsuyu, C. (2017). A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Safety science, 91, 24-32.
  • Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Systems with Applications, 65, 398-422.
  • Lin, C. J., & Wu, W. W. (2008). A causal analytical method for group decision-making under fuzzy environment. Expert Systems with Applications, 34(1), 205-213.
  • Liu, H. C., Li, Z., Song, W., & Su, Q. (2017). Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Transactions on Reliability, 66(4), 1058-1072.
  • Marhavilas, P. K., Koulouriotis, D., & Gemeni, V. (2011). Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009. Journal of Loss Prevention in the Process Industries, 24(5), 477-523.
  • Meknatjoo, M., & Omidvari, M. (2015). Safety risk assessment by using William–Fine method with compilation fuzzy DEMATEL in machining process. Iran Occupational Health, 12(5), 31-42.
  • Menteş, A., Akyıldız, H., Yetkin, M., & Türkoğlu, N. (2015). A FSA based fuzzy DEMATEL approach for risk assessment of cargo ships at coasts and open seas of Turkey. Safety science, 79, 1-10.
  • Othman, M. R., Idris, R., Hassim, M. H., & Ibrahim, W. H. W. (2016). Prioritizing HAZOP analysis using analytic hierarchy process (AHP). Clean Technologies and Environmental Policy, 18(5), 1345-1360.
  • Pinto, A., Nunes, I.L., & Ribeiro, R.A. (2011). Occupational risk assessment in construction industry–Overview and reflection. Safety Science, 49(5), 616-624.
  • Rezaee, M. J., Salimi, A., & Yousefi, S. (2017). Identifying and managing failures in stone processing industry using cost-based FMEA. The International Journal of Advanced Manufacturing Technology, 88(9-12), 3329-3342.
  • SGK, Sosyal Güvenlik Kurumu. (2018). SGK İstatistik Yıllıkları. http://www.sgk.gov.tr/wps/portal/ sgk/tr/kurumsal/istatistik/sgk_istatistik_yilliklari
  • Shariati, S., Yazdani-Chamzini, A., Salsani, A., & Tamosaitiene, J. (2014). Proposing a new model for waste dump site selection: Case study of Ayerma Phosphate Mine. Inzinerine Ekonomika-Engineering Economics, 25(4), 410-419.
  • Sodhi, M. S., Son, B. G., & Tang, C. S. (2012). Researchers' perspectives on supply chain risk management. Production and operations management, 21(1), 1-13.
  • Tixier, J., Dusserre, G., Salvi, O., & Gaston, D. (2002). Review of 62 risk analysis methodologies of industrial plants. Journal of Loss Prevention in the process industries, 15(4), 291-303.
  • TMMOB, Makine Mühendisleri Odası. (2018). Oda Raporu: İşçi Sağlığı ve İş Güvenliği. Güncellenmiş 8.Baskı, Yayın No: MMO-689, Ankara.
  • Verma, S., & Chaudhari, S. (2016). Highlights from the literature on risk assessment techniques adopted in the mining industry: a review of past contributions, recent developments and future scope. International Journal of Mining Science and Technology, 26(4), 691-702.
  • Wang, Q., Wang, H., & Qi, Z. (2016). An application of nonlinear fuzzy analytic hierarchy process in safety evaluation of coal mine. Safety science, 86, 78-87.
  • WHO, Dünya Sağlık Örgütü. (2018). Occupational Health. http://www.who.int/topics/occupational_health/en/
  • Yazdi, M. (2017). Hybrid probabilistic risk assessment using fuzzy FTA and fuzzy AHP in a process industry. Journal of Failure Analysis and Prevention, 17(4), 756-764.
  • Yılmaz, N., & Şenol, M. B. (2017). İş sağlığı ve güvenliği risk değerlendirme süreci için bulanık çok kriterli bir model ve uygulaması. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(1), 77-87.
  • Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decisionmaking. Technological and Economic Development of Economy, 16(2), 159-172.
  • Zhang, F., Rahman, A., Goh, M., Ignatius, J., & Ng, P. S. (2017). The State of the Art in FAHP in Risk Assessment. In Fuzzy Analytic Hierarchy Process (pp. 33-66). Chapman and Hall/CRC.
  • Zhou, J. L., Bai, Z. H., & Sun, Z. Y. (2014). A hybrid approach for safety assessment in high-risk hydropower-construction-project work systems. Safety Science, 64, 163-172.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Hamit Erdal 0000-0001-8352-6427

Yayımlanma Tarihi 27 Nisan 2019
Gönderilme Tarihi 29 Eylül 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Erdal, H. (2019). İş Sağlığı ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi ve Bir Uygulama. MANAS Sosyal Araştırmalar Dergisi, 8(2), 1831-1853. https://doi.org/10.33206/mjss.465681
AMA Erdal H. İş Sağlığı ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi ve Bir Uygulama. MJSS. Nisan 2019;8(2):1831-1853. doi:10.33206/mjss.465681
Chicago Erdal, Hamit. “İş Sağlığı Ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi Ve Bir Uygulama”. MANAS Sosyal Araştırmalar Dergisi 8, sy. 2 (Nisan 2019): 1831-53. https://doi.org/10.33206/mjss.465681.
EndNote Erdal H (01 Nisan 2019) İş Sağlığı ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi ve Bir Uygulama. MANAS Sosyal Araştırmalar Dergisi 8 2 1831–1853.
IEEE H. Erdal, “İş Sağlığı ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi ve Bir Uygulama”, MJSS, c. 8, sy. 2, ss. 1831–1853, 2019, doi: 10.33206/mjss.465681.
ISNAD Erdal, Hamit. “İş Sağlığı Ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi Ve Bir Uygulama”. MANAS Sosyal Araştırmalar Dergisi 8/2 (Nisan 2019), 1831-1853. https://doi.org/10.33206/mjss.465681.
JAMA Erdal H. İş Sağlığı ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi ve Bir Uygulama. MJSS. 2019;8:1831–1853.
MLA Erdal, Hamit. “İş Sağlığı Ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi Ve Bir Uygulama”. MANAS Sosyal Araştırmalar Dergisi, c. 8, sy. 2, 2019, ss. 1831-53, doi:10.33206/mjss.465681.
Vancouver Erdal H. İş Sağlığı ve Güvenliği İçin DEMATEL-ARAS Tabanlı Risk Değerlendirme Metodolojisi ve Bir Uygulama. MJSS. 2019;8(2):1831-53.

MANAS Journal of Social Studies (MANAS Sosyal Araştırmalar Dergisi)     


16155