Klinik Araştırma
BibTex RIS Kaynak Göster

Spontan Dolaşımın Geri Dönüşünü Tahmin Etmede Delta Karbondioksitin (ΔCO2) Tanısal Değerinin İncelenmesi: Prospektif Tek Merkezli Çalışma

Yıl 2023, Cilt: 7 Sayı: 2, 211 - 218, 31.08.2023
https://doi.org/10.29058/mjwbs.1233918

Öz

Amaç: Delta karbondioksit veya ΔCO2, normalde 3-5 mmHg'yi geçmemesi gereken parsiyel
karbondioksit (pCO2) basıncı ile end-tidal karbondioksit (ETCO2) arasındaki farktır. Kritik hastalarda
ΔCO2, kalp debisinin azalması ve pulmoner kan akışındaki bozulmanın bir sonucu olarak yükselir. Bu çalışmanın birincil sonlanımı, hastane dışı kardiyak arrest (HDKA) hastalarında spontan dolaşımın geri dönüşünü (SDGD) öngörmede ΔCO2 'nin tanısal değerini incelemektir.
Gereç ve Yöntemler: Bu prospektif gözlemsel çalışmaya 18 yaşın üzerindeki travmatik olmayan HDKA hastaları dahil edildi. ETCO2 değerleri
entübasyondan 1 dakika sonra kaydedildi ve hastalardan eş zamanlı olarak arter kan gazı örneği alındı. SDGD olan ve SDGD olmayan hasta
gruplarının ilk ΔCO2 medyanları arasındaki fark analiz edildi ve ΔCO2'nin SDGD'yi öngörmedeki tanısal performansı hesaplandı. HDKA
hastalarında SDGD'yi doğru bir şekilde tahmin etmek için bir regresyon modeli uygulandı.
Bulgular: Son analize toplam 46 hasta dahil edildi. SDGD+ grubunun ΔCO2 medyanı, SDGD- grubundan anlamlı olarak düşüktü (p=0,026,
%95GA: -31 - -3). Optimum eşikdeğeri için (51,4 mmHg) eğri altındaki alan 0,694 (%95GA: 0,532 - 0,855), duyarlılık %76,19 (%95GA:52,83
- %91,78), özgüllük %76 (%95GA:54,87 - 90,64) ve doğruluk %76,09 (%95GA:%61,23 - %87,41) olarak hesaplandı. Yaş, ilk ETCO2 ve ilk
kardiyak ritminden oluşan regresyon modeli, SDGD'yi öngörmede iyi bir performans gösterdi (EAA=0,846, %95CI=0,735 - 0,956, p<0,001).
Sonuç: SDGD+ ve SDGD- HDKA hastalarının ilk ΔCO2 medyanları arasında istatistiksel olarak anlamlı bir fark bulundu. Ancak bu testin
performansı, ΔCO2'nin SDGD'yi tahmin etmek için tek başına bir test olarak kullanılamayacağını göstermektedir.

Kaynakça

  • 1. Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010 v;81(11):1479-87.
  • 2. Matsuyama T, Kitamura T, Kiyohara K, Nishiyama C, Nishiuchi T, Hayashi Y, Kawamura T, Ohta B, Iwami T. Impact of cardiopulmonary resuscitation duration on neurologically favourable outcome after out-of-hospital cardiac arrest: A population-based study in Japan. Resuscitation. 2017;113:1-7.
  • 3. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP,VanWagner LB, Wilkins JT, Wong SS, Virani SS; on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019; 139:e56–e528.
  • 4. Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, Neumar RW, O’Neil BJ, Paxton JH, Silvers SM, White RD, Yannopoulos D, Donnino MW. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015;132(18 Suppl 2):S444-464.
  • 5. Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med 1985;13(11):907- 909.
  • 6. Shetty A, Sparenberg S, Adams K, Selvedran S, Tang B, Hanna K, Iredell J. Arterial to end-tidal carbon dioxide tension difference (CO2 gap) as a prognostic marker for adverse outcomes in emergency department patients presenting with suspected sepsis. Emerg Med Australas 2018;30(6):794-801.
  • 7. Kim YW, Hwang SO, Kang HS, Cha KC. The gradient between arterial and end-tidal carbon dioxide predicts in-hospital mortality in post-cardiac arrest patient. Am J Emerg Med 2019;37(1):1-4.
  • 8. Yousuf T, Brinton T, Murtaza G, Wozniczka D, Ahmad K, Iskandar J, Mehta R, Keshmiri H, Hanif T. Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome. J Investig Med 2017;65(2):338-341.
  • 9. Tyburski JG, Collinge JD, Wilson RF, Carlin AM, Albaran RG, Steffes CP. End-tidal CO2-derived values during emergency trauma surgery correlated with outcome: a prospective study. J Trauma 2002;53(4):738-743.
  • 10. Wang AY, Huang CH, Chang WT, Tsai MS, Wang CH, Chen WJ. Initial end-tidal CO2 partial pressure predicts outcomes of in-hospital cardiac arrest. Am J Emerg Med 2016;34(12):2367- 2371.
  • 11. Callaham M, Barton C, Matthay M. Effect of epinephrine on the ability of end-tidal carbon dioxide readings to predict initial resuscitation from cardiac arrest. Crit Care Med 1992;20(3):337- 343.
  • 12. Lah K, Križmarić M, Grmec S. The dynamic pattern of endtidal carbon dioxide during cardiopulmonary resuscitation: difference between asphyxial cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest. Crit Care 2011;15(1):R13.
  • 13. Nolan JP, Berg RA, Andersen LW, Bhanji F, Chan PS, Donnino MW, Lim SH, Ma MH, Nadkarni VM, Starks MA, Perkins GD, Morley PT, Soar J. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). Circulation 2019;140(18):e746-e757.
  • 14. Paiva EF, Paxton JH, O’Neil BJ. The use of end-tidal carbon dioxide (ETCO2) measurement to guide management of cardiac arrest: A systematic review. Resuscitation 2018;123:1- 7.
  • 15. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM; Adult Basic and Advanced Life Support Writing Group. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020; 20;142 (16_suppl_2):S366-S468.
  • 16. Shetty AL, Lai KH, Byth K. The CO₂ GAP Project--CO₂ GAP as a prognostic tool in emergency departments. Emerg Med Australas 2010;22(6):524-531.
  • 17. Lo YH, Siu YCA. Predicting Survived Events in Nontraumatic Out-of-Hospital Cardiac Arrest: A Comparison Study on Machine Learning and Regression Models. J Emerg Med 2021;61(6):683-694.
  • 18. Lonsain WS, De Lausnay L, Wauters L, Desruelles D, Dewolf P. The prognostic value of early lactate clearance for survival after out-of-hospital cardiac arrest. Am J Emerg Med 2021;46:56-62.

Diagnostic Accuracy of the Carbon Dioxide Gap (ΔCO2) in Predicting the Return of Spontaneous Circulation: A Prospective Single Center Study

Yıl 2023, Cilt: 7 Sayı: 2, 211 - 218, 31.08.2023
https://doi.org/10.29058/mjwbs.1233918

Öz

Aim: The carbon dioxide gap or ΔCO2 is the difference between the partial pressure of carbon dioxide
(pCO2 ) and end-tidal carbon dioxide (ETCO2 ), which should normally not exceed 3-5mmHg. In critically ill
patients ΔCO2 increases as a result of decreased cardiac output and pulmonary blood flow compromise.
The primary outcome of this study is to examine the diagnostic accuracy of ΔCO2 in predicting the return
of spontaneous circulation (ROSC) in out-of-hospital cardiac arrest (OHCA) patients.
Material and Methods: Non-traumatic OHCA patients over 18 years of age were included in this
prospective observational study. ETCO2 values were recorded 1 minute after the intubation and arterial
blood gas samples were acquired simutaneously. The difference between the initial ΔCO2 medians of
the ROSC+ and ROSC- patient groups were analyzed and the diagnostic test performance in predicting
ROSC of ΔCO2 was calculated. A regression model was performed to accurately predict ROSC in
OHCA patients.
Results: A total of 46 patients were included to the inal analysis. The ΔCO2 median of the ROSC+ group
was significantly lower than the ROSC- group (p=0.026, 95%CI:-31 to-3). Area under the curve was
calculated as 0.694 (95%CI: 0.532 to 0.855), sensitivity 76.19% (95%CI:52.83 to 91.78%), specificity
76% (95%CI:54.87 to 90.64), and accuracy 76.09% (95%CI:61.23% to87.41%) for the optimal cut-off
value (51.4 mmHg). The regression model consists of age, initial ETCO2 , and initial cardiac rhythm
showed good discrimination in predicting ROSC (AUC=0.846, 95%CI=0.735 to 0.956, p<0.001).
Conclusion: A statistically significant difference was found between the initial ΔCO2 medians in ROSC+
and ROSC- OHCA patients. However, the performance of this test indicates that ΔCO2 cannot be used
as a stand-alone test to predict ROSC.

Kaynakça

  • 1. Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation. 2010 v;81(11):1479-87.
  • 2. Matsuyama T, Kitamura T, Kiyohara K, Nishiyama C, Nishiuchi T, Hayashi Y, Kawamura T, Ohta B, Iwami T. Impact of cardiopulmonary resuscitation duration on neurologically favourable outcome after out-of-hospital cardiac arrest: A population-based study in Japan. Resuscitation. 2017;113:1-7.
  • 3. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP,VanWagner LB, Wilkins JT, Wong SS, Virani SS; on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019; 139:e56–e528.
  • 4. Link MS, Berkow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, Neumar RW, O’Neil BJ, Paxton JH, Silvers SM, White RD, Yannopoulos D, Donnino MW. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015;132(18 Suppl 2):S444-464.
  • 5. Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon dioxide. Crit Care Med 1985;13(11):907- 909.
  • 6. Shetty A, Sparenberg S, Adams K, Selvedran S, Tang B, Hanna K, Iredell J. Arterial to end-tidal carbon dioxide tension difference (CO2 gap) as a prognostic marker for adverse outcomes in emergency department patients presenting with suspected sepsis. Emerg Med Australas 2018;30(6):794-801.
  • 7. Kim YW, Hwang SO, Kang HS, Cha KC. The gradient between arterial and end-tidal carbon dioxide predicts in-hospital mortality in post-cardiac arrest patient. Am J Emerg Med 2019;37(1):1-4.
  • 8. Yousuf T, Brinton T, Murtaza G, Wozniczka D, Ahmad K, Iskandar J, Mehta R, Keshmiri H, Hanif T. Establishing a gradient between partial pressure of arterial carbon dioxide and end-tidal carbon dioxide in patients with acute respiratory distress syndrome. J Investig Med 2017;65(2):338-341.
  • 9. Tyburski JG, Collinge JD, Wilson RF, Carlin AM, Albaran RG, Steffes CP. End-tidal CO2-derived values during emergency trauma surgery correlated with outcome: a prospective study. J Trauma 2002;53(4):738-743.
  • 10. Wang AY, Huang CH, Chang WT, Tsai MS, Wang CH, Chen WJ. Initial end-tidal CO2 partial pressure predicts outcomes of in-hospital cardiac arrest. Am J Emerg Med 2016;34(12):2367- 2371.
  • 11. Callaham M, Barton C, Matthay M. Effect of epinephrine on the ability of end-tidal carbon dioxide readings to predict initial resuscitation from cardiac arrest. Crit Care Med 1992;20(3):337- 343.
  • 12. Lah K, Križmarić M, Grmec S. The dynamic pattern of endtidal carbon dioxide during cardiopulmonary resuscitation: difference between asphyxial cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest. Crit Care 2011;15(1):R13.
  • 13. Nolan JP, Berg RA, Andersen LW, Bhanji F, Chan PS, Donnino MW, Lim SH, Ma MH, Nadkarni VM, Starks MA, Perkins GD, Morley PT, Soar J. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). Circulation 2019;140(18):e746-e757.
  • 14. Paiva EF, Paxton JH, O’Neil BJ. The use of end-tidal carbon dioxide (ETCO2) measurement to guide management of cardiac arrest: A systematic review. Resuscitation 2018;123:1- 7.
  • 15. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM; Adult Basic and Advanced Life Support Writing Group. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020; 20;142 (16_suppl_2):S366-S468.
  • 16. Shetty AL, Lai KH, Byth K. The CO₂ GAP Project--CO₂ GAP as a prognostic tool in emergency departments. Emerg Med Australas 2010;22(6):524-531.
  • 17. Lo YH, Siu YCA. Predicting Survived Events in Nontraumatic Out-of-Hospital Cardiac Arrest: A Comparison Study on Machine Learning and Regression Models. J Emerg Med 2021;61(6):683-694.
  • 18. Lonsain WS, De Lausnay L, Wauters L, Desruelles D, Dewolf P. The prognostic value of early lactate clearance for survival after out-of-hospital cardiac arrest. Am J Emerg Med 2021;46:56-62.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Muzaffer İslam 0000-0001-6928-2307

Gökhan Aksel 0000-0002-5580-3201

Serkan Emre Eroğlu 0000-0002-3183-3713

Hayrullah Yönak 0000-0001-8057-540X

Yayımlanma Tarihi 31 Ağustos 2023
Kabul Tarihi 19 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 2

Kaynak Göster

Vancouver İslam MM, Aksel G, Eroğlu SE, Yönak H. Diagnostic Accuracy of the Carbon Dioxide Gap (ΔCO2) in Predicting the Return of Spontaneous Circulation: A Prospective Single Center Study. Med J West Black Sea. 2023;7(2):211-8.

Zonguldak Bülent Ecevit Üniversitesi Tıp Fakültesi’nin bilimsel yayım organıdır.

Ulusal ve uluslararası tüm kurum ve kişilere elektronik olarak ücretsiz ulaşmayı hedefleyen hakemli bir dergidir.

Dergi yılda üç kez olmak üzere Nisan, Ağustos ve Aralık aylarında yayımlanır.

Derginin yayım dili Türkçe ve İngilizcedir.