Derleme
BibTex RIS Kaynak Göster

TSPO’nun (18 kDa Translokatör Protein) Yapısı, İşlevi ve Patolojik Süreçlerdeki Rolü

Yıl 2024, Cilt: 8 Sayı: 3, 218 - 229, 30.12.2024

Öz

Farmakolojik ve yapısal olarak santral benzodiazepin reseptörlerinden farklı olan TSPO, ilk olarak böbrekte diazepam için bağlanma alanı
olarak keşfedilmiş ve beyin dışı yerleşimi nedeniyle “periferik benzodiazepin reseptörü” olarak tanımlanmıştır. Daha sonra periferik dokularla
birlikte merkezi sinir sistemindeki glial hücreler, endotelyal hücreler ve bazı nöron popülasyonlarında da yüksek oranda bulunduğu tespit
edildiğinden bu protein, “18 kDa Translokatör Protein (18 kDa TSPO)’’ olarak yeniden adlandırılmıştır. Mitokondri dış zarında yerleşik olan
TSPO, hücre içindeki konumu itibariyle kolestrolün mitokondriye taşınmasını sağlayarak steroid sentezi, proliferasyon, inflamasyon ve apopitoz gibi birçok önemli süreçte rol oynamaktadır. TSPO’nun farklı patolojilerdeki etkilerinin araştırılması amacıyla Ro5-4864 ve PK11195
başta olmak üzere çeşitli TSPO ligandları kullanılmaktadır. TSPO ve ligandları; Alzheimer hastalığı (AH), frontotemporal demans, multipl
skleroz, Huntington hastalığı, amyotrofik lateral skleroz ve Parkinson hastalığı gibi nörodejeneratif hastalıkların tanı ve tedavisinde önemli
farmakolojik hedefler haline gelmiştir. Ayrıca hücre çoğalmasında öncül proteinlerin mitokondriye taşınmasında da görevli olduğundan bazı
malignitelerdeki etkileri de incelenmektedir. Çalışmamızda TSPO’nun çeşitli fizyopatolojik süreçlerdeki rolleri ele alınarak potansiyel tanı ve
tedavi hedefi olarak değerlendirilmesi amaçlanmıştır.

Kaynakça

  • 1. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–698.
  • 2. Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20(5):267–284.
  • 3. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci. 1977;74(9):3805–3809.
  • 4. Bonsack F, Sukumari-Ramesh S. TSPO: An Evolutionarily Conserved Protein with Elusive Functions. Int J Mol Sci. 2018;19(6):1694.
  • 5. Yu M, Zhao S. Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep. 2024;29(2):33.
  • 6. Rupprecht R, Rammes G, Eser D, Baghai TC, Schüle C, Nothdurfter C, Troxler T, Gentsch C, Kalkman HO, Chaperon F, Uzunov V, McAllister KH, Bertaina-Anglade V, La Rochelle CD, Tuerck D, Floesser A, Kiese B, Schumacher M, Landgraf R, Holsboer F, Kucher K. Translocator Protein (18 kD) as Target for Anxiolytics Without Benzodiazepine-Like Side Effects. Science. 2009;325(5939):490–493.
  • 7. Kim S, Kim N, Park S, Jeon Y, Lee J, Yoo SJ, Lee JW, Moon C, Yu SW, Kim EK. Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance. Autophagy. 2020;16(7):1200–1220.
  • 8. Lee J-W, Nam H, Yu S-W. Systematic Analysis of Translocator Protein 18 kDa (TSPO) Ligands on Toll-like Receptors-mediated Pro-inflammatory Responses in Microglia and Astrocytes. Exp Neurobiol. 2016;25(5):262–268.
  • 9. Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, Hardwick M, Li H, Vidic B, Brown AS, Reversa JL, Bernassau JM, Drieu K. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids. 1997;62(1):21–28.
  • 10. Snyder SH, Verma A, Trifiletti RR. The peripheral‐type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. Faseb J. 1987;1(4):282–288.
  • 11. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27(8):402–409.
  • 12. Veenman L, Papadopoulos V, Gavish M. Channel-Like Functions of the 18-kDa Translocator Protein (TSPO): Regulation of Apoptosis and Steroidogenesis as Part of the Host-Defense Response. Curr Pharm Des. 2007;13(23):2385–2405.
  • 13. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004;427(6973):461–465.
  • 14. Woodfield K, Rück A, Brdiczka D, Halestrap AP. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998;336(2):287– 290.
  • 15. Li F, Liu J, Liu N, Kuhn LA, Garavito RM, Ferguson-Miller S. Translocator Protein 18 kDa (TSPO): An Old Protein with New Functions? Biochemistry. 2016;55(20):2821–2831.
  • 16. Arbo BD, Ribeiro MF, Garcia-Segura LM. Development of new treatments for Alzheimer’s disease based on the modulation of translocator protein (TSPO). Ageing Res Rev. 2019;54:100943.
  • 17. Li H, Papadopoulos V. Peripheral-Type Benzodiazepine Receptor Function in Cholesterol Transport. Identification of a Putative Cholesterol Recognition/Interaction Amino Acid Sequence and Consensus Pattern 1. Endocrinology. 1998;139(12):4991– 4997.
  • 18. Costa E, Guidotti A. Diazepam binding inhibitor (DBI): A peptide with multiple biological actions. Life Sci. 1991;49(5):325– 344.
  • 19. Lacor P, Gandolfo P, Tonon MC, Brault E, Dalibert I, Schumacher M, Benavides J, Ferzaz B. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration: a role for PBR in neurosteroidogenesis. Brain Res. 1999;815(1):70–80.
  • 20. Mokrov G V., Deeva OA, Gudasheva TA. The Ligands of Translocator Protein: Design and Biological Properties. Curr Pharm Des. 2021;27(2):217–237.
  • 21. Papadopoulos V, Lecanu L. Translocator protein (18 kDa) TSPO: An emerging therapeutic target in neurotrauma. Exp Neurol. 2009;219(1):53–57.
  • 22. Verleye M, Akwa Y, Liere P, Ladurelle N, Pianos A, Eychenne B, Schumacher M, Gillardin JM. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol Biochem Behav. 2005;82(4):712–720.
  • 23. Nguyen N, Fakra E, Pradel V, Jouve E, Alquier C, Le Guern ME, Micallef J, Blin O. Efficacy of etifoxine compared to lorazepam monotherapy in the treatment of patients with adjustment disorders with anxiety: a double‐blind controlled study in general practice. Hum Psychopharmacol Clin Exp. 2006;21(3):139– 149.
  • 24. Yamamoto M, Arimura H, Fukushige T, Minami K, Nishizawa Y, Tanimoto A, Kanekura T, Nakagawa M, Akiyama S, Furukawa T. Abcb10 role in heme biosynthesis in vivo: Abcb10 knockout in mice causes anemia with protoporphyrin IX and iron accumulation. Mol Cell Biol. 2014;34(6):1077-1084.
  • 25. Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P, Oudinet JP, Webb M, Hering H. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology. 2016;108:229- 237.
  • 26. Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU, McLarnon JG. Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem. 2002;83(3):546-555.
  • 27. Seneviratne MS, Faccenda D, De Biase V, Campanella M. PK11195 inhibits mitophagy targeting the F1Fo-ATPsynthase in Bcl-2 knock-down cells. Curr Mol Med. 2012;12(4):476-482.
  • 28. Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. TSPO activation modulates the effects of high pressure in a rat ex vivo glaucoma model. Neuropharmacology. 2016;111:142- 159.
  • 29. Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D, Akassoglou K, Verdin E, Hirschey MD, Stainier DY. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol. 2013;9:97-104.
  • 30. Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE. 4’-Chlorodiazepam Protects Mitochondria in T98G Astrocyte Cell Line from Glucose Deprivation. Neurotox Res. 2017;32(2):163-171.
  • 31. Biswas L, Ibrahim KS, Li X, Zhou X, Zeng Z, Craft J, Shu X. Effect of a TSPO ligand on retinal pigment epithelial cholesterol homeostasis in high-fat fed mice, implication for age-related macular degeneration. Exp Eye Res. 2021;208:108625.
  • 32. Ibrahim KS, Craft JA, Biswas L, Spencer J, Shu X. Etifoxine reverses weight gain and alters the colonic bacterial community in a mouse model of obesity. Biochem Pharmacol. 2020;180:114151.
  • 33. Papadopoulos V. Structure and Function of the Peripheral-Type Benzodiazepine Receptor in Steroidogenic Cells. Exp Biol Med. 1998;217(2):130–142.
  • 34. Lee DH, Kang SK, Lee RH, Ryu JM, Park HY, Choi HS, Bae YC, Suh KT, Kim YK, Jung JS. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J Cell Physiol. 2004;198(1):91–99.
  • 35. Toor JS, Sikka SC. Developmental and Reproductive Disorders Role of Endocrine Disruptors in Testicular Toxicity. In: Reproductive and Developmental Toxicology. 2nd ed. Elsevier; 2017. 1111–1121.
  • 36. Chung J-Y, Chen H, Midzak A, Burnett AL, Papadopoulos V, Zirkin BR. Drug Ligand-Induced Activation of Translocator Protein (TSPO) Stimulates Steroid Production by Aged Brown Norway Rat Leydig Cells. Endocrinology. 2013;154(6):2156– 2165.
  • 37. Hauet T, Yao ZX, Bose HS, Wall CT, Han Z, Li W, Hales DB, Miller WL, Culty M, Papadopoulos V. Peripheral-Type Benzodiazepine Receptor-Mediated Action of Steroidogenic Acute Regulatory Protein on Cholesterol Entry into Leydig Cell Mitochondria. Mol Endocrinol. 2005;19(2):540–554.
  • 38. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci. 1992;89(8):3170–3174.
  • 39. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen A-L. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta. 2009;1787(11):1395–1401.
  • 40. Liu Y, Gao L, Xue Q, Li Z, Wang L, Chen R, Liu M, Wen Y, Guan M, Li Y, Wang S. Voltage-dependent anion channel involved in the mitochondrial calcium cycle of cell lines carrying the mitochondrial DNA A4263G mutation. Biochem Biophys Res Commun. 2011;404(1):364–369.
  • 41. Ostuni MA, Ducroc R, Péranzi G, Tonon M, Papadopoulos V, Lacapere J. Translocator protein (18 kDa) ligand PK 11195 induces transient mitochondrial Ca 2+ release leading to transepithelial Cl − secretion in HT‐29 human colon cancer cells. Biol Cell. 2007;99(11):639–647.
  • 42. Canat X, Carayon P, Bouaboula M, Cahard D, Shire D, Roque C, Le Fur G, Casellas P. Distribution profile and properties of peripheral-type benzodiazepine receptors on human hemopoietic cells. Life Sci. 1993;52(1):107–118.
  • 43. Bessler H, Weizman R, Gavish M, Notti I, Djaldetti M. Immunomodulatory effect of peripheral benzodiazepine receptor ligands on human mononuclear cells. J Neuroimmunol. 1992;38(1– 2):19–25.
  • 44. Zavala F, Taupin V, Descamps-Latscha B. In vivo treatment with benzodiazepines inhibits murine phagocyte oxidative metabolism and production of interleukin 1, tumor necrosis factor and interleukin-6. J Pharmacol Exp Ther. 1990;255(2):442– 450.
  • 45. Torres SR., Nardi GM, Ferrara P, Ribeiro-do-Valle RM, Farges RC. Potential role of peripheral benzodiazepine receptors in inflammatory responses. Eur J Pharmacol. 1999;385(2–3):R1– 2.
  • 46. Farges RC, da Silva MBS, Fröde TS. Implication of glucocorticoid in anti-inflammatory effects of Ro5-4864 in mouse pleurisy induced by carrageenan. Life Sci. 2006;78(16):1814–1822.
  • 47. Bribes E, Bourrie B, Casellas P. Ligands of the peripheral benzodiazepine receptor have therapeutic effects in pneumopathies in vivo. Immunol Lett. 2003;88(3):241–247.
  • 48. Blevins LK, Crawford RB, Azzam DJ, Guilarte TR, Kaminski NE. Surface translocator protein 18 kDa (TSPO) localization on immune cells upon stimulation with LPS and in ART-treated HIV+ subjects. J Leukoc Biol. 2021;110(1):123–140.
  • 49. Kaynar G, Yurdakan G, Comert F, Yilmaz-Sipahi E. Effects of peripheral benzodiazepine receptor ligand Ro5-4864 in four animal models of acute lung injury. J Surg Res. 2013;182(2):277– 284.
  • 50. Dereli B, Yurdakan G, Ozel Tekin IO, Arasli M, Kokturk F, Yilmaz- Can E. Effect of TSPO Ligand, Ro5-4864, on Lung Injury in ARDS Model Induced by ANTU in Rats. Int J Pul & Res Sci. 2021; 5(3): 555665.
  • 51. Cui Y, Liang Y, Ip MSM, Mak JCW. Cigarette smoke induces apoptosis via 18 kDa translocator protein in human bronchial epithelial cells. Life Sci. 2021;265:118862.
  • 52. Keskin E, Can EY, Aydın HA, Işık E, Özgen U, Şimşek K, Cengil O, Başar C, Kalaycı M. The preventative effect of of Ro5- 4864 (peripheral benzodiazepine receptor agonist) on spinal epidural fibrosis after laminectomy in a rat model. Neurol Res. 2021;43(12):1107–1115.
  • 53. Song J, Yu W, Chen S, Huang J, Zhou C, Liang H. Remimazolam attenuates inflammation and kidney fibrosis following folic acid injury. Eur J Pharmacol. 2024;966:176342.
  • 54. Kim T, Pae AN. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: a patent review (2010–2015; part 1). Expert Opin Ther Pat. 2016;26(11):1325–1351.
  • 55. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, Nozaki S, Fujimura Y, Koeda M, Asada T, Suhara T. Increased Binding of Peripheral Benzodiazepine Receptor in Alzheimer’s Disease Measured by Positron Emission Tomography with [11C]DAA1106. Biol Psychiatry. 2008;64(10):835–841.
  • 56. Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler J. 2005;11(2):127–134.
  • 57. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P. Microglial activation correlates with severity in Huntington disease. Neurology. 2006;66(11):1638–1643.
  • 58. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21(2):404–412.
  • 59. Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, Barron AM. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation. 2021;18(1):76.
  • 60. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, Zhang MR, Suzuki K, Ando K, Staufenbiel M, Trojanowski JQ, Lee VM, Higuchi M, Suhara T. Imaging of Peripheral Benzodiazepine Receptor Expression as Biomarkers of Detrimental versus Beneficial Glial Responses in Mouse Models of Alzheimer’s and Other CNS Pathologies. J Neurosci. 2008;28(47):12255– 12267.
  • 61. Garland EF, Dennett O, Lau LC, Chatelet DS, Bottlaender M, Nicoll JAR, Boche D. The mitochondrial protein TSPO in Alzheimer’s disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation. 2023;20(1):186.
  • 62. Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O, Haaparanta-Solin M, Nag S, Nakao R, Al-Tawil N, Wells LA, Rabiner EA, Valencia R, Schultze-Mosgau M, Thiele A, Vollmer S, Dyrks T, Lehmann L, Heinrich T, Hoffmann A, Nordberg A, Halldin C, Rinne JO. Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging. 2015;42(3):438-446.
  • 63. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. 2015;11(6):608-621.
  • 64. Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M; Clinical IMABio3 team. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain. 2016;139(Pt 4):1252-1264.
  • 65. Parbo P, Ismail R, Hansen KV, Amidi A, Mårup FH, Gottrup H, Brændgaard H, Eriksson BO, Eskildsen SF, Lund TE, Tietze A, Edison P, Pavese N, Stokholm MG, Borghammer P, Hinz R, Aanerud J, Brooks DJ. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain. 2017;140(7):2002-2011.
  • 66. Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ, Edison P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain. 2018;141(9):2740-2754.
  • 67. Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, Mathis CA. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66(1):60- 67.
  • 68. Gulyás B, Vas A, Tóth M, Takano A, Varrone A, Cselényi Z, Schain M, Mattsson P, Halldin C. Age and disease related changes in the translocator protein (TSPO) system in the human brain: positron emission tomography measurements with [11C] vinpocetine. Neuroimage. 2011;56(3):1111-1121.
  • 69. Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyás B, Borg J, Boellaard R, Al-Tawil N, Eriksdotter M, Zimmermann T, Schultze-Mosgau M, Thiele A, Hoffmann A, Lammertsma AA, Halldin C. In vivo imaging of the 18-kDa translocator protein (TSPO) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging. 2013;40(6):921-931.
  • 70. Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD, Virta J, Haaparanta-Solin M, Luoto P, Savisto N, Solin O, Valencia R, Thiele A, Eriksson J, Schuit RC, Lammertsma AA, Rinne JO. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2015;35(5):766-772.
  • 71. Chen M, Baidoo K, Verina T, Guilarte TR. Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain. 2004;127(6):1379–1392.
  • 72. Karchewski LA, Bloechlinger S, Woolf CJ. Axonal injury‐dependent induction of the peripheral benzodiazepine receptor in small‐diameter adult rat primary sensory neurons. Eur J Neurosci. 2004;20(3):671–683.
  • 73. Gao N, Ma B, Jia H, Hao C, Jin T, Liu X. Translocator protein alleviates allodynia and improves Schwann cell function against diabetic peripheral neuropathy via activation of the Nrf2‐dependent antioxidant system and promoting autophagy. Diabet Med. 2023;40(6).
  • 74. Dominguini D, Steckert A V., Abatti MR, Generoso JS, Barichello T, Dal-Pizzol F. The Protective Effect of PK-11195 on Cognitive Impairment in Rats Survived of Polymicrobial Sepsis. Mol Neurobiol. 2021;58(6):2724–2733.
  • 75. Maeda J, Higuchi M, Inaji M, Ji B, Haneda E, Okauchi T, Zhang MR, Suzuki K, Suhara T. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res. 2007;1157:100–111.
  • 76. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C] (R)-PK11195 PET study. Neuroimage. 2005;24(2):591–595.
  • 77. Venneti S, Wagner AK, Wang G, Slagel SL, Chen X, Lopresti BJ, Mathis CA, Wiley CA. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: Implications for PET imaging. Exp Neurol. 2007;207(1):118–127.
  • 78. Rocca P, Beoni AM, Eva C, Ferrero P, Zanalda E, Ravizza L. Peripheral benzodiazepine receptor messenger RNA is decreased in lymphocytes of generalized anxiety disorder patients. Biol Psychiatry. 1998;43(10):767–773.
  • 79. Gavish M. Altered Platelet Peripheral-Type Benzodiazepine Receptor in Posttraumatic Stress Disorder. Neuropsychopharmacology. 1996;14(3):181–186.
  • 80. Pini S, Martini C, Abelli M, Muti M, Gesi C, Montali M, Chelli B, Lucacchini A, Cassano GB. Peripheral-type benzodiazepine receptor binding sites in platelets of patients with panic disorder associated to separation anxiety symptoms. Psychopharmacology (Berl). 2005;181(2):407–411.
  • 81. Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, Weizman A. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev. 1999;51(4):629–650.
  • 82. Nakamura K, Yamada K, Iwayama Y, Toyota T, Furukawa A, Takimoto T, Terayama H, Iwahashi K, Takei N, Minabe Y, Sekine Y, Suzuki K, Iwata Y, Pillai A, Nakamoto Y, Ikeda K, Yoshii M, Fukunishi I, Yoshikawa T, Mori N. Evidence that variation in the peripheral benzodiazepine receptor (PBR) gene influences susceptibility to panic disorder. Am J Med Genet Part B Neuropsychiatr Genet. 2006;141B(3):222–226.
  • 83. Weizman A, Burgin R, Harel Y, Karp L, Gavish M. Platelet peripheral- type benzodiazepine receptor in major depression. J Affect Disord. 1995;33(4):257–261.
  • 84. Abelli M, Chelli B, Costa B, Lari L, Cardini A, Gesi C, Muti M, Lucacchini A, Martini C, Cassano GB, Pini S. Reductions in Platelet 18-kDa Translocator Protein Density Are Associated with Adult Separation Anxiety in Patients with Bipolar Disorder. Neuropsychobiology. 2010;62(2):98–103.
  • 85. Soreni N, Apter A, Weizman A, Don-Tufeled O, Leschiner S, Karp L, Gavish M. Decreased platelet peripheral-type benzodiazepine receptors in adolescent inpatients with repeated suicide attempts. Biol Psychiatry. 1999;46(4):484–488.
  • 86. Ritsner M, Modai I, Gibel A, Leschiner S, Silver H, Tsinovoy G, Weizman A, Gavish M. Decreased platelet peripheral-type benzodiazepine receptors in persistently violent schizophrenia patients. J Psychiatr Res. 2003;37(6):549–556.
  • 87. Sneeboer MAM, van der Doef T, Litjens M, Psy NBB, Melief J, Hol EM, Kahn RS, de Witte LD. Microglial activation in schizophrenia: Is translocator 18 kDa protein (TSPO) the right marker? Schizophr Res. 2020;215:167–172.
  • 88. Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: Role of protein–protein interactions and implications in disease states. Biochim Biophys Acta - Mol Cell Biol Lipids. 2009;1791(7):646–658.
  • 89. Wright G, Reichenbecher V. The Effects of Superoxide and the Peripheral Benzodiazepine Receptor Ligands on the Mitochondrial Processing of Manganese-Dependent Superoxide Dismutase. Exp Cell Res. 1999;246(2):443–450.
  • 90. Batarseh A, Papadopoulos V. Regulation of translocator protein 18kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol. 2010;327(1–2):1–12.
  • 91. Katz Y, Eitan A, Amiri Z, Gavish M. Dramatic increase in peripheral benzodiazepine binding sites in human colonic adenocarcinoma as compared to normal colon. Eur J Pharmacol. 1988;148(3):483–484.
  • 92. Katz Y, Ben-Baruch G, Kloog Y, Menczer J, Gavish M. Increased density of peripheral benzodiazepine-binding sites in ovarian carcinomas as compared with benign ovarian tumours and normal ovaries. Clin Sci. 1990;78(2):155–158.
  • 93. Katz Y, Eitan A, Gavish M. Increase in Peripheral Benzodiazepine Binding Sites in Colonic Adenocarcinoma. Oncology. 1990;47(2):139–142.
  • 94. Galiègue S, Casellas P, Kramar A, Tinel N, Simony-Lafontaine J. Immunohistochemical Assessment of the Peripheral Benzodiazepine Receptor in Breast Cancer and Its Relationship with Survival. Clin Cancer Res. 2004;10(6):2058–2064.
  • 95. Han Z, Slack RS, Li W, Papadopoulos V. Expression of Peripheral Benzodiazepine Receptor (PBR) in Human Tumors: Relationship to Breast, Colorectal, and Prostate Tumor Progression. J Recept Signal Transduct. 2003;23(2–3):225–238.
  • 96. Zhang D, Man D, Lu J, Jiang Y, Ding B, Su R, Tong R, Chen J, Yang B, Zheng S, Chen D, Wu J. Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Adv Sci. 2023;10(15).
  • 97. Fafalios A, Akhavan A, Parwani A V., Bies RR, McHugh KJ, Pflug BR. Translocator Protein Blockade Reduces Prostate Tumor Growth. Clin Cancer Res. 2009;15(19):6177–6184.
  • 98. Beinlich A, Strohmeier R, Kaufmann M, Kuhl H. Specific binding of benzodiazepines to human breast cancer cell lines. Life Sci. 1999;65(20):2099–2108.

Structure and Function of TSPO (18 kDa Translocator Protein) and Its Role in Pathological Processes

Yıl 2024, Cilt: 8 Sayı: 3, 218 - 229, 30.12.2024

Öz

TSPO, which is pharmacologically and structurally different from central benzodiazepine receptors, was first discovered as a binding site for
diazepam in the kidney and was defined as a "peripheral benzodiazepine receptor" due to its location outside the brain. It was later renamed
"18 kDa Translocator Protein (18 kDa TSPO)" because it was found to be highly abundant in glial cells, endothelial cells and some neuron
populations in the central nervous system as well as peripheral tissues. TSPO, which is located on the outer membrane of mitochondria,
plays a role in many important processes such as steroid synthesis, proliferation, inflammation and apoptosis by transporting cholesterol
into mitochondria. Various TSPO ligands, especially Ro5-4864 and PK11195, are used to investigate the effects of TSPO in different pathologies.
TSPO and its ligands have become important pharmacological targets in the diagnosis and treatment of neurodegenerative diseases
such as Alzheimer's disease (AD), frontotemporal dementia, multiple sclerosis, Huntington's disease, amyotrophic lateral sclerosis and
Parkinson's disease. Since TSPO is also involved in the transport of cell proliferation precursor proteins to mitochondria, its effects in some
malignancies are also being studied. In our study, we aimed to investigate the roles of TSPO in various physiopathological processes and to
evaluate it as a potential diagnostic and therapeutic target.

Kaynakça

  • 1. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–698.
  • 2. Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20(5):267–284.
  • 3. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci. 1977;74(9):3805–3809.
  • 4. Bonsack F, Sukumari-Ramesh S. TSPO: An Evolutionarily Conserved Protein with Elusive Functions. Int J Mol Sci. 2018;19(6):1694.
  • 5. Yu M, Zhao S. Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep. 2024;29(2):33.
  • 6. Rupprecht R, Rammes G, Eser D, Baghai TC, Schüle C, Nothdurfter C, Troxler T, Gentsch C, Kalkman HO, Chaperon F, Uzunov V, McAllister KH, Bertaina-Anglade V, La Rochelle CD, Tuerck D, Floesser A, Kiese B, Schumacher M, Landgraf R, Holsboer F, Kucher K. Translocator Protein (18 kD) as Target for Anxiolytics Without Benzodiazepine-Like Side Effects. Science. 2009;325(5939):490–493.
  • 7. Kim S, Kim N, Park S, Jeon Y, Lee J, Yoo SJ, Lee JW, Moon C, Yu SW, Kim EK. Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance. Autophagy. 2020;16(7):1200–1220.
  • 8. Lee J-W, Nam H, Yu S-W. Systematic Analysis of Translocator Protein 18 kDa (TSPO) Ligands on Toll-like Receptors-mediated Pro-inflammatory Responses in Microglia and Astrocytes. Exp Neurobiol. 2016;25(5):262–268.
  • 9. Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, Hardwick M, Li H, Vidic B, Brown AS, Reversa JL, Bernassau JM, Drieu K. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids. 1997;62(1):21–28.
  • 10. Snyder SH, Verma A, Trifiletti RR. The peripheral‐type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. Faseb J. 1987;1(4):282–288.
  • 11. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27(8):402–409.
  • 12. Veenman L, Papadopoulos V, Gavish M. Channel-Like Functions of the 18-kDa Translocator Protein (TSPO): Regulation of Apoptosis and Steroidogenesis as Part of the Host-Defense Response. Curr Pharm Des. 2007;13(23):2385–2405.
  • 13. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 2004;427(6973):461–465.
  • 14. Woodfield K, Rück A, Brdiczka D, Halestrap AP. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998;336(2):287– 290.
  • 15. Li F, Liu J, Liu N, Kuhn LA, Garavito RM, Ferguson-Miller S. Translocator Protein 18 kDa (TSPO): An Old Protein with New Functions? Biochemistry. 2016;55(20):2821–2831.
  • 16. Arbo BD, Ribeiro MF, Garcia-Segura LM. Development of new treatments for Alzheimer’s disease based on the modulation of translocator protein (TSPO). Ageing Res Rev. 2019;54:100943.
  • 17. Li H, Papadopoulos V. Peripheral-Type Benzodiazepine Receptor Function in Cholesterol Transport. Identification of a Putative Cholesterol Recognition/Interaction Amino Acid Sequence and Consensus Pattern 1. Endocrinology. 1998;139(12):4991– 4997.
  • 18. Costa E, Guidotti A. Diazepam binding inhibitor (DBI): A peptide with multiple biological actions. Life Sci. 1991;49(5):325– 344.
  • 19. Lacor P, Gandolfo P, Tonon MC, Brault E, Dalibert I, Schumacher M, Benavides J, Ferzaz B. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration: a role for PBR in neurosteroidogenesis. Brain Res. 1999;815(1):70–80.
  • 20. Mokrov G V., Deeva OA, Gudasheva TA. The Ligands of Translocator Protein: Design and Biological Properties. Curr Pharm Des. 2021;27(2):217–237.
  • 21. Papadopoulos V, Lecanu L. Translocator protein (18 kDa) TSPO: An emerging therapeutic target in neurotrauma. Exp Neurol. 2009;219(1):53–57.
  • 22. Verleye M, Akwa Y, Liere P, Ladurelle N, Pianos A, Eychenne B, Schumacher M, Gillardin JM. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol Biochem Behav. 2005;82(4):712–720.
  • 23. Nguyen N, Fakra E, Pradel V, Jouve E, Alquier C, Le Guern ME, Micallef J, Blin O. Efficacy of etifoxine compared to lorazepam monotherapy in the treatment of patients with adjustment disorders with anxiety: a double‐blind controlled study in general practice. Hum Psychopharmacol Clin Exp. 2006;21(3):139– 149.
  • 24. Yamamoto M, Arimura H, Fukushige T, Minami K, Nishizawa Y, Tanimoto A, Kanekura T, Nakagawa M, Akiyama S, Furukawa T. Abcb10 role in heme biosynthesis in vivo: Abcb10 knockout in mice causes anemia with protoporphyrin IX and iron accumulation. Mol Cell Biol. 2014;34(6):1077-1084.
  • 25. Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P, Oudinet JP, Webb M, Hering H. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology. 2016;108:229- 237.
  • 26. Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU, McLarnon JG. Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem. 2002;83(3):546-555.
  • 27. Seneviratne MS, Faccenda D, De Biase V, Campanella M. PK11195 inhibits mitophagy targeting the F1Fo-ATPsynthase in Bcl-2 knock-down cells. Curr Mol Med. 2012;12(4):476-482.
  • 28. Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. TSPO activation modulates the effects of high pressure in a rat ex vivo glaucoma model. Neuropharmacology. 2016;111:142- 159.
  • 29. Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D, Akassoglou K, Verdin E, Hirschey MD, Stainier DY. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol. 2013;9:97-104.
  • 30. Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE. 4’-Chlorodiazepam Protects Mitochondria in T98G Astrocyte Cell Line from Glucose Deprivation. Neurotox Res. 2017;32(2):163-171.
  • 31. Biswas L, Ibrahim KS, Li X, Zhou X, Zeng Z, Craft J, Shu X. Effect of a TSPO ligand on retinal pigment epithelial cholesterol homeostasis in high-fat fed mice, implication for age-related macular degeneration. Exp Eye Res. 2021;208:108625.
  • 32. Ibrahim KS, Craft JA, Biswas L, Spencer J, Shu X. Etifoxine reverses weight gain and alters the colonic bacterial community in a mouse model of obesity. Biochem Pharmacol. 2020;180:114151.
  • 33. Papadopoulos V. Structure and Function of the Peripheral-Type Benzodiazepine Receptor in Steroidogenic Cells. Exp Biol Med. 1998;217(2):130–142.
  • 34. Lee DH, Kang SK, Lee RH, Ryu JM, Park HY, Choi HS, Bae YC, Suh KT, Kim YK, Jung JS. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J Cell Physiol. 2004;198(1):91–99.
  • 35. Toor JS, Sikka SC. Developmental and Reproductive Disorders Role of Endocrine Disruptors in Testicular Toxicity. In: Reproductive and Developmental Toxicology. 2nd ed. Elsevier; 2017. 1111–1121.
  • 36. Chung J-Y, Chen H, Midzak A, Burnett AL, Papadopoulos V, Zirkin BR. Drug Ligand-Induced Activation of Translocator Protein (TSPO) Stimulates Steroid Production by Aged Brown Norway Rat Leydig Cells. Endocrinology. 2013;154(6):2156– 2165.
  • 37. Hauet T, Yao ZX, Bose HS, Wall CT, Han Z, Li W, Hales DB, Miller WL, Culty M, Papadopoulos V. Peripheral-Type Benzodiazepine Receptor-Mediated Action of Steroidogenic Acute Regulatory Protein on Cholesterol Entry into Leydig Cell Mitochondria. Mol Endocrinol. 2005;19(2):540–554.
  • 38. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci. 1992;89(8):3170–3174.
  • 39. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen A-L. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta. 2009;1787(11):1395–1401.
  • 40. Liu Y, Gao L, Xue Q, Li Z, Wang L, Chen R, Liu M, Wen Y, Guan M, Li Y, Wang S. Voltage-dependent anion channel involved in the mitochondrial calcium cycle of cell lines carrying the mitochondrial DNA A4263G mutation. Biochem Biophys Res Commun. 2011;404(1):364–369.
  • 41. Ostuni MA, Ducroc R, Péranzi G, Tonon M, Papadopoulos V, Lacapere J. Translocator protein (18 kDa) ligand PK 11195 induces transient mitochondrial Ca 2+ release leading to transepithelial Cl − secretion in HT‐29 human colon cancer cells. Biol Cell. 2007;99(11):639–647.
  • 42. Canat X, Carayon P, Bouaboula M, Cahard D, Shire D, Roque C, Le Fur G, Casellas P. Distribution profile and properties of peripheral-type benzodiazepine receptors on human hemopoietic cells. Life Sci. 1993;52(1):107–118.
  • 43. Bessler H, Weizman R, Gavish M, Notti I, Djaldetti M. Immunomodulatory effect of peripheral benzodiazepine receptor ligands on human mononuclear cells. J Neuroimmunol. 1992;38(1– 2):19–25.
  • 44. Zavala F, Taupin V, Descamps-Latscha B. In vivo treatment with benzodiazepines inhibits murine phagocyte oxidative metabolism and production of interleukin 1, tumor necrosis factor and interleukin-6. J Pharmacol Exp Ther. 1990;255(2):442– 450.
  • 45. Torres SR., Nardi GM, Ferrara P, Ribeiro-do-Valle RM, Farges RC. Potential role of peripheral benzodiazepine receptors in inflammatory responses. Eur J Pharmacol. 1999;385(2–3):R1– 2.
  • 46. Farges RC, da Silva MBS, Fröde TS. Implication of glucocorticoid in anti-inflammatory effects of Ro5-4864 in mouse pleurisy induced by carrageenan. Life Sci. 2006;78(16):1814–1822.
  • 47. Bribes E, Bourrie B, Casellas P. Ligands of the peripheral benzodiazepine receptor have therapeutic effects in pneumopathies in vivo. Immunol Lett. 2003;88(3):241–247.
  • 48. Blevins LK, Crawford RB, Azzam DJ, Guilarte TR, Kaminski NE. Surface translocator protein 18 kDa (TSPO) localization on immune cells upon stimulation with LPS and in ART-treated HIV+ subjects. J Leukoc Biol. 2021;110(1):123–140.
  • 49. Kaynar G, Yurdakan G, Comert F, Yilmaz-Sipahi E. Effects of peripheral benzodiazepine receptor ligand Ro5-4864 in four animal models of acute lung injury. J Surg Res. 2013;182(2):277– 284.
  • 50. Dereli B, Yurdakan G, Ozel Tekin IO, Arasli M, Kokturk F, Yilmaz- Can E. Effect of TSPO Ligand, Ro5-4864, on Lung Injury in ARDS Model Induced by ANTU in Rats. Int J Pul & Res Sci. 2021; 5(3): 555665.
  • 51. Cui Y, Liang Y, Ip MSM, Mak JCW. Cigarette smoke induces apoptosis via 18 kDa translocator protein in human bronchial epithelial cells. Life Sci. 2021;265:118862.
  • 52. Keskin E, Can EY, Aydın HA, Işık E, Özgen U, Şimşek K, Cengil O, Başar C, Kalaycı M. The preventative effect of of Ro5- 4864 (peripheral benzodiazepine receptor agonist) on spinal epidural fibrosis after laminectomy in a rat model. Neurol Res. 2021;43(12):1107–1115.
  • 53. Song J, Yu W, Chen S, Huang J, Zhou C, Liang H. Remimazolam attenuates inflammation and kidney fibrosis following folic acid injury. Eur J Pharmacol. 2024;966:176342.
  • 54. Kim T, Pae AN. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: a patent review (2010–2015; part 1). Expert Opin Ther Pat. 2016;26(11):1325–1351.
  • 55. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, Nozaki S, Fujimura Y, Koeda M, Asada T, Suhara T. Increased Binding of Peripheral Benzodiazepine Receptor in Alzheimer’s Disease Measured by Positron Emission Tomography with [11C]DAA1106. Biol Psychiatry. 2008;64(10):835–841.
  • 56. Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler J. 2005;11(2):127–134.
  • 57. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P. Microglial activation correlates with severity in Huntington disease. Neurology. 2006;66(11):1638–1643.
  • 58. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21(2):404–412.
  • 59. Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, Barron AM. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation. 2021;18(1):76.
  • 60. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, Zhang MR, Suzuki K, Ando K, Staufenbiel M, Trojanowski JQ, Lee VM, Higuchi M, Suhara T. Imaging of Peripheral Benzodiazepine Receptor Expression as Biomarkers of Detrimental versus Beneficial Glial Responses in Mouse Models of Alzheimer’s and Other CNS Pathologies. J Neurosci. 2008;28(47):12255– 12267.
  • 61. Garland EF, Dennett O, Lau LC, Chatelet DS, Bottlaender M, Nicoll JAR, Boche D. The mitochondrial protein TSPO in Alzheimer’s disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation. 2023;20(1):186.
  • 62. Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O, Haaparanta-Solin M, Nag S, Nakao R, Al-Tawil N, Wells LA, Rabiner EA, Valencia R, Schultze-Mosgau M, Thiele A, Vollmer S, Dyrks T, Lehmann L, Heinrich T, Hoffmann A, Nordberg A, Halldin C, Rinne JO. Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer’s disease patients and control subjects. Eur J Nucl Med Mol Imaging. 2015;42(3):438-446.
  • 63. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. 2015;11(6):608-621.
  • 64. Hamelin L, Lagarde J, Dorothée G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M; Clinical IMABio3 team. Early and protective microglial activation in Alzheimer’s disease: a prospective study using 18F-DPA-714 PET imaging. Brain. 2016;139(Pt 4):1252-1264.
  • 65. Parbo P, Ismail R, Hansen KV, Amidi A, Mårup FH, Gottrup H, Brændgaard H, Eriksson BO, Eskildsen SF, Lund TE, Tietze A, Edison P, Pavese N, Stokholm MG, Borghammer P, Hinz R, Aanerud J, Brooks DJ. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain. 2017;140(7):2002-2011.
  • 66. Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ, Edison P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain. 2018;141(9):2740-2754.
  • 67. Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, Mathis CA. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66(1):60- 67.
  • 68. Gulyás B, Vas A, Tóth M, Takano A, Varrone A, Cselényi Z, Schain M, Mattsson P, Halldin C. Age and disease related changes in the translocator protein (TSPO) system in the human brain: positron emission tomography measurements with [11C] vinpocetine. Neuroimage. 2011;56(3):1111-1121.
  • 69. Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyás B, Borg J, Boellaard R, Al-Tawil N, Eriksdotter M, Zimmermann T, Schultze-Mosgau M, Thiele A, Hoffmann A, Lammertsma AA, Halldin C. In vivo imaging of the 18-kDa translocator protein (TSPO) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging. 2013;40(6):921-931.
  • 70. Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD, Virta J, Haaparanta-Solin M, Luoto P, Savisto N, Solin O, Valencia R, Thiele A, Eriksson J, Schuit RC, Lammertsma AA, Rinne JO. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2015;35(5):766-772.
  • 71. Chen M, Baidoo K, Verina T, Guilarte TR. Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain. 2004;127(6):1379–1392.
  • 72. Karchewski LA, Bloechlinger S, Woolf CJ. Axonal injury‐dependent induction of the peripheral benzodiazepine receptor in small‐diameter adult rat primary sensory neurons. Eur J Neurosci. 2004;20(3):671–683.
  • 73. Gao N, Ma B, Jia H, Hao C, Jin T, Liu X. Translocator protein alleviates allodynia and improves Schwann cell function against diabetic peripheral neuropathy via activation of the Nrf2‐dependent antioxidant system and promoting autophagy. Diabet Med. 2023;40(6).
  • 74. Dominguini D, Steckert A V., Abatti MR, Generoso JS, Barichello T, Dal-Pizzol F. The Protective Effect of PK-11195 on Cognitive Impairment in Rats Survived of Polymicrobial Sepsis. Mol Neurobiol. 2021;58(6):2724–2733.
  • 75. Maeda J, Higuchi M, Inaji M, Ji B, Haneda E, Okauchi T, Zhang MR, Suzuki K, Suhara T. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res. 2007;1157:100–111.
  • 76. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C] (R)-PK11195 PET study. Neuroimage. 2005;24(2):591–595.
  • 77. Venneti S, Wagner AK, Wang G, Slagel SL, Chen X, Lopresti BJ, Mathis CA, Wiley CA. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: Implications for PET imaging. Exp Neurol. 2007;207(1):118–127.
  • 78. Rocca P, Beoni AM, Eva C, Ferrero P, Zanalda E, Ravizza L. Peripheral benzodiazepine receptor messenger RNA is decreased in lymphocytes of generalized anxiety disorder patients. Biol Psychiatry. 1998;43(10):767–773.
  • 79. Gavish M. Altered Platelet Peripheral-Type Benzodiazepine Receptor in Posttraumatic Stress Disorder. Neuropsychopharmacology. 1996;14(3):181–186.
  • 80. Pini S, Martini C, Abelli M, Muti M, Gesi C, Montali M, Chelli B, Lucacchini A, Cassano GB. Peripheral-type benzodiazepine receptor binding sites in platelets of patients with panic disorder associated to separation anxiety symptoms. Psychopharmacology (Berl). 2005;181(2):407–411.
  • 81. Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, Weizman A. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev. 1999;51(4):629–650.
  • 82. Nakamura K, Yamada K, Iwayama Y, Toyota T, Furukawa A, Takimoto T, Terayama H, Iwahashi K, Takei N, Minabe Y, Sekine Y, Suzuki K, Iwata Y, Pillai A, Nakamoto Y, Ikeda K, Yoshii M, Fukunishi I, Yoshikawa T, Mori N. Evidence that variation in the peripheral benzodiazepine receptor (PBR) gene influences susceptibility to panic disorder. Am J Med Genet Part B Neuropsychiatr Genet. 2006;141B(3):222–226.
  • 83. Weizman A, Burgin R, Harel Y, Karp L, Gavish M. Platelet peripheral- type benzodiazepine receptor in major depression. J Affect Disord. 1995;33(4):257–261.
  • 84. Abelli M, Chelli B, Costa B, Lari L, Cardini A, Gesi C, Muti M, Lucacchini A, Martini C, Cassano GB, Pini S. Reductions in Platelet 18-kDa Translocator Protein Density Are Associated with Adult Separation Anxiety in Patients with Bipolar Disorder. Neuropsychobiology. 2010;62(2):98–103.
  • 85. Soreni N, Apter A, Weizman A, Don-Tufeled O, Leschiner S, Karp L, Gavish M. Decreased platelet peripheral-type benzodiazepine receptors in adolescent inpatients with repeated suicide attempts. Biol Psychiatry. 1999;46(4):484–488.
  • 86. Ritsner M, Modai I, Gibel A, Leschiner S, Silver H, Tsinovoy G, Weizman A, Gavish M. Decreased platelet peripheral-type benzodiazepine receptors in persistently violent schizophrenia patients. J Psychiatr Res. 2003;37(6):549–556.
  • 87. Sneeboer MAM, van der Doef T, Litjens M, Psy NBB, Melief J, Hol EM, Kahn RS, de Witte LD. Microglial activation in schizophrenia: Is translocator 18 kDa protein (TSPO) the right marker? Schizophr Res. 2020;215:167–172.
  • 88. Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: Role of protein–protein interactions and implications in disease states. Biochim Biophys Acta - Mol Cell Biol Lipids. 2009;1791(7):646–658.
  • 89. Wright G, Reichenbecher V. The Effects of Superoxide and the Peripheral Benzodiazepine Receptor Ligands on the Mitochondrial Processing of Manganese-Dependent Superoxide Dismutase. Exp Cell Res. 1999;246(2):443–450.
  • 90. Batarseh A, Papadopoulos V. Regulation of translocator protein 18kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol. 2010;327(1–2):1–12.
  • 91. Katz Y, Eitan A, Amiri Z, Gavish M. Dramatic increase in peripheral benzodiazepine binding sites in human colonic adenocarcinoma as compared to normal colon. Eur J Pharmacol. 1988;148(3):483–484.
  • 92. Katz Y, Ben-Baruch G, Kloog Y, Menczer J, Gavish M. Increased density of peripheral benzodiazepine-binding sites in ovarian carcinomas as compared with benign ovarian tumours and normal ovaries. Clin Sci. 1990;78(2):155–158.
  • 93. Katz Y, Eitan A, Gavish M. Increase in Peripheral Benzodiazepine Binding Sites in Colonic Adenocarcinoma. Oncology. 1990;47(2):139–142.
  • 94. Galiègue S, Casellas P, Kramar A, Tinel N, Simony-Lafontaine J. Immunohistochemical Assessment of the Peripheral Benzodiazepine Receptor in Breast Cancer and Its Relationship with Survival. Clin Cancer Res. 2004;10(6):2058–2064.
  • 95. Han Z, Slack RS, Li W, Papadopoulos V. Expression of Peripheral Benzodiazepine Receptor (PBR) in Human Tumors: Relationship to Breast, Colorectal, and Prostate Tumor Progression. J Recept Signal Transduct. 2003;23(2–3):225–238.
  • 96. Zhang D, Man D, Lu J, Jiang Y, Ding B, Su R, Tong R, Chen J, Yang B, Zheng S, Chen D, Wu J. Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Adv Sci. 2023;10(15).
  • 97. Fafalios A, Akhavan A, Parwani A V., Bies RR, McHugh KJ, Pflug BR. Translocator Protein Blockade Reduces Prostate Tumor Growth. Clin Cancer Res. 2009;15(19):6177–6184.
  • 98. Beinlich A, Strohmeier R, Kaufmann M, Kuhl H. Specific binding of benzodiazepines to human breast cancer cell lines. Life Sci. 1999;65(20):2099–2108.
Toplam 98 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Derleme
Yazarlar

Yusuf Elma 0000-0002-2670-6875

Emine Yılmaz Can 0000-0003-4022-2233

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 3 Mayıs 2024
Kabul Tarihi 13 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 3

Kaynak Göster

Vancouver Elma Y, Yılmaz Can E. TSPO’nun (18 kDa Translokatör Protein) Yapısı, İşlevi ve Patolojik Süreçlerdeki Rolü. Med J West Black Sea. 2024;8(3):218-29.

Zonguldak Bülent Ecevit Üniversitesi Tıp Fakültesi’nin bilimsel yayım organıdır.

Ulusal ve uluslararası tüm kurum ve kişilere elektronik olarak ücretsiz ulaşmayı hedefleyen hakemli bir dergidir.

Dergi yılda üç kez olmak üzere Nisan, Ağustos ve Aralık aylarında yayımlanır.

Derginin yayım dili Türkçe ve İngilizcedir.