Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasound Biometry for Axial Length Measurement and Intraocular Lens Power Calculation Among Cataract Patients: Postoperative Refractive Results

Yıl 2025, Cilt: 9 Sayı: 2, 142 - 149, 31.08.2025
https://doi.org/10.29058/mjwbs.1566497

Öz

Aim: To evaluate postoperative refractive outcomes of axial length and intraocular lens power measurements obtained by ultrasound biometry
among cataract patients.
Material and Methods: The files of consecutive senile cataract patients who underwent uncomplicated phacoemulsification surgery and
completed postoperative 2 months follow-up were reviewed retrospectively. The eyes with ocular comorbidity, preoperative axial length
shorter than 22.0 mm, or longer than 24.5 mm were excluded from the study. Axial length measurement was obtained by ultrasound
biometry and intraocular lens power was calculated according to the SRK/T formula. Demographical and clinical data including axial length,
keratometry, visual acuity, cataract localization and grade, manifest refraction, and postoperative refractive data were noted.
Results: A total of 108 eyes of 82 patients with the mean age of 67.6±8.2 years were included in the study. Mean preoperative axial
length and keratometric astigmatism were 23.04±0.65 mm and -0.34± 0.17 D, respectively. Mean target refraction was -0.12±0.15 D. At
postoperative month-2, 73.1% of patients eyes had ≤0.25 D MR spherical equivalent. Mean absolute prediction error for postoperative
refraction was 0.04±0.35 (0.04; -0.98-0.91) D, and there was no statistically significant correlation between absolute prediction error and
cataract location, density, axial length, preoperative keratometry, visual acuity, or manifest refraction (p>0.05).
Conclusion: Although modern cataract surgery and recent optical biometry methods offer excellent postoperative refractive outcomes,
backup ultrasound contact biometry is still neccessary and provides satisfactory refractive outcomes.

Etik Beyan

The study was approved by the IRB Committee (number:2023/257, date:13.10.2023)and adhered to the tenets of the Declaration of Helsinki. Written informed consent was obtained from each patient before enrollment.

Kaynakça

  • 1. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472-485. doi:10.1111/j.1755- 3768.2007.00879.x
  • 2. Kraff MC, Sanders DR, Lieberman HL. Determination of intraocular lens power: a comparison with and without ultrasound. Ophthalmic Surg. 1978;9(1):81-84.
  • 3. Falhar M, Rehák J. The contact and immersion ultrasound methods compared using the ray tracing method. Opt Appl. 2010;40(1):77-92.
  • 4. Chylack LT Jr, Leske MC, McCarthy D, Khu PM, Kashiwagi T, Sperduto, R. Lens Opacities Classification System II (LOCS II). Arch Ophthalmol. 1989;107:991-997. doi:10.1001/archopht. 1989.01070020053028
  • 5. Lee AC, Qazi MA, Pepose JS. Biometry and intraocular lens power calculation. Curr Opin Ophthalmol. 2008;19(1):13-17. doi:10.1097/ICU.0b013e3282f1c5ad
  • 6. Sahin A, Hamrah P. Clinically relevant biometry. Curr Opin Ophthalmol. 2012;23(1):47-53. doi:10.1097/ICU.0b013e32834cd63e
  • 7. Moshirfar M, Buckner B, Ronquillo YC, Hofstedt D. Biometry in cataract surgery: a review of the current literature. Curr Opin Ophthalmol. 2019;30(1):9-12. doi:10.1097/ ICU.0000000000000536
  • 8. Hoffmann PC, Hütz WW, Eckhardt HB, Heuring AH. [Intraocular lens calculation and ultrasound biometry: immersion and contact procedures]. Klin Monbl Augenheilkd. 1998;213(3):161- 165. doi:10.1055/s-2008-1034967
  • 9. Ossoinig KC. Standardized Echography. Int Ophthalmol Clin. 1979;19(4):127-210. doi:10.1097/00004397-197901940-00007
  • 10. Olsen T, Nielsen PJ. Immersion versus contact technique in the measurement of axial length by ultrasound. Acta Ophthalmol. 2009;67(1):101-102. doi:10.1111/j.1755-3768.1989. tb00732.x
  • 11. Hennessy MP, Chan DG. Contact versus immersion biometry of axial length before cataract surgery. J Cataract Refract Surg. 2003;29(11):2195-2198. doi:10.1016/S0886-3350(03)00224-4
  • 12. Lam AKC, Chan R, Pang PCK. The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster. Ophthalmic Physiol Opt. 2001;21(6):477-483. doi:10.1046/j.1475-1313.2001.00611.x
  • 13. Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, Schild G, Rainer G, Maca S, Petternel V, Lackner B, Drexler W. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg. 2003;29(10):1950-1955. doi:10.1016/ S0886-3350(03)00243-8
  • 14. Gantenbein CPA, Ruprecht KW. Comparaison entre biométrie optique et acoustique de l’oeil. J Fr Ophtalmol. 2004;27(10):1121-1127. doi:10.1016/S0181-5512(04)96280-8
  • 15. El Chehab H, Giraud J-M, Le Corre A, Chave N, Durand F, Kuter S, Ract-Madoux G, Swalduz B, Mourgues G, Dot C. [Comparison between Lenstar LS 900 non-contact biometry and OcuScan RXP contact biometry for task delegation]. J Fr Ophtalmol. 2011;34(3):175-180. doi:10.1016/j.jfo.2010.09.026
  • 16. Aktas S, Aktas H, Tetikoglu M, Sagdk HM, Özcura F. Refractive Results Using a New Optical Biometry Device: Comparison With Ultrasound Biometry Data. Medicine (Baltimore). 2015;94(48):e2169. doi:10.1097/MD.0000000000002169
  • 17. Ademola-Popoola DS, Nzeh DA, Saka SE, Olokoba LB, Obajolowo TS. Comparison of ocular biometry measurements by applanation and immersion A-scan techniques. J Curr Ophthalmol. 2015;27(3-4):110-114. doi:10.1016/j.joco.2015.12.002
  • 18. Aydin R, Karaman Erdur S, Serefoglu Cabuk K, Karahan E, Kaynak S. Comparision of Optical Low Coherence Reflectometry Versus Ultrasonic Biometry in High Hypermetropia. Eye Contact Lens Sci Clin Pract. 2018;44(1):S115-S117. doi:10.1097/ICL.0000000000000350
  • 19. Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye. 2002;16(5):552-556. doi:10.1038/sj.eye. 6700157
  • 20. Hill W, Angeles R, Otani T. Evaluation of a new IOLMaster algorithm to measure axial length. J Cataract Refract Surg. 2008;34(6):920-924. doi:10.1016/j.jcrs.2008.02.021
  • 21. Wilson ME, Trivedi RH. Axial length measurement techniques in pediatric eyes with cataract. Saudi J Ophthalmol. 2012;26(1):13-17. doi:10.1016/j.sjopt.2011.11.002
  • 22. Pongsachareonnont P, Tangjanyatam S. Accuracy of axial length measurements obtained by optical biometry and acoustic biometry in rhegmatogenous retinal detachment: a prospective study. Clin Ophthalmol. 2018;Volume 12:973-980. doi:10.2147/ OPTH.S165875
  • 23. Kapoor M, Venkatesh P, Chawla R, Temkar S, Aggarwal E. Simplifying biometry in oil-filled eyes: A novel formula for axial length calculation in eyes with 1000 cSt silicone oil. Indian J Ophthalmol. 2023;71(6):2466-2468. doi:10.4103/ijo.IJO_2187_22
  • 24. Kimura S, Hosokawa MM, Shiode Y, Matoba R, Kanzaki Y, Goto Y, Kanenaga K, Suzuki E, Morizane Y. Accuracy of ultrasound vs. Fourier-domain optic biometry for measuring preoperative axial length in cases of rhegmatogenous retinal detachment. Jpn J Ophthalmol. August 2023:[Online ahead of print]. doi:10.1007/s10384-023-01018-2
  • 25. Brodie SE, Gupta PC, Irsch K, et al. Basic and Clinical Science Course, Section 3: Clinical Optics. In: Korn BS, Burkat CN, Carter KD, et al., eds. American Academy of Ophthalmology. San Francisco, CA: American Academy of Ophthalmology; 2018:239-266.
  • 26. Goel S, Chua C, Butcher M, Jones CA, Bagga P, Kotta S. Laser vs ultrasound biometry—a study of intra- and interobserver variability. Eye. 2004;18(5):514-518. doi:10.1038/sj.eye.6700705
  • 27. Martín-Serrano MJ, Roman-Ortiz C, Villa-Sáez ML, Labrador- Castellanos MP, Blanco-Carrasco R, Lozano-Ballesteros F, Pedraza-Martín C, José-Herrero MT, López-Ropero AM, Tenías Burillo JM. Concordance and Interchangeability of Biometric Measurements of Ocular Axial Length in Patients Awaiting Cataract Surgery. Eur J Ophthalmol. 2014;24(1):29-34. doi:10.5301/ejo.5000318
  • 28. Donaldson K, Fernández-Vega-Cueto L, Davidson R, Dhaliwal D, Hamilton R, Jackson M, Patterson L, Stonecipher K; ASCRS Refractive–Cataract Surgery Subcommittee. Perioperative assessment for refractive cataract surgery. J Cataract Refract Surg. 2018;44(5):642-653. doi:10.1016/j.jcrs.2018.02.022
  • 29. Symes RJ, Say MJ, Ursell PG. Scheimpflug keratometry versus conventional automated keratometry in routine cataract surgery. J Cataract Refract Surg. 2010;36(7):1107-1114. doi: 10.1016/j.jcrs.2009.11.026

Katarakt Cerrahisi Öncesi Göz İçi Lens Gücü Hesaplamasında Ultrasonik Biyometri: Postoperatif Refraktif Sonuçlar

Yıl 2025, Cilt: 9 Sayı: 2, 142 - 149, 31.08.2025
https://doi.org/10.29058/mjwbs.1566497

Öz

Amaç: Bu çalışmada; katarakt cerrahisi öncesi ultrasonik biyometri yöntemi ile aksiyel uzunluk ölçümü ve göz içi lens gücü hesaplaması
yapılan olgularda postoperatif refraktif sonuçların incelenmesi amaçlanmıştır.
Gereç ve Yöntemler: Kliniğimizde senil katarakt tanısı ile cerrahi uygulanmış olgular retrospektif incelendi. Aksiyel uzunluk ve göz içi
lens gücü ölçümlerinde ultrasonik kontakt biyometri kullanılan, fakoemülsifikasyon cerrahisi uygulanan ve peroperatif cerrahi komplikasyon
gelişmeyen gözler çalışmaya dahil edildi. Ek oküler hastalığı bulunan veya aksiyel uzunluğu kısa (<22,0 mm) veya uzun (>24,5 mm) ölçülen gözler çalışmaya dahil edilmedi. Demografik verilerin yanısıra; keratometri ve aksiyel uzunluk ölçümleri, görme keskinlikleri (logMar),
katarakt türü ve sertliği, SRK/T formülüne göre hesaplanmış göz içi lens gücü, preoperatif hedef refraksiyon ve postoperatif 2. ayda refraktif
sonuçlar incelendi.
Bulgular: Çalışmaya toplam 82 hastanın 108 gözü dahil edildi. Olguların %52,4’ü erkek ve ortalama yaş 67,6±8,2 yıl idi. Preoperatif
ortalama aksiyel uzunluk 23.04±0.65 mm ve ortalama korneal astigmatizma -0,34± 0,17 D ölçüldü. Hedef postoperatif refraktif kusur ortalama
-0,12±0,15 D idi. Postoperatif 2. ayda, olguların %73,1’inde ≤0,25 D manifest refraksiyon sferik eşdeğeri sağlandı. Hedef refraksiyona göre,
ortalama 0,04±0,35 (0,04; -0,98-0,91) D refraktif sapma izlendi. Postoperatif refraktif sapma ile kataraktın sertliği ve anatomik lokalizasyonu,
preoperatif görme keskinliği, korneal astigmatizma, manifest refraksiyon veya aksiyel uzunluk arasında istatistiksel olarak anlamlı bir ilişki
saptanmadı (p>0,05).
Sonuç: Modern cerrahi teknikler ve teknolojik gelişmeler sayesinde katarakt cerrahisi sonrası refraktif kusur oldukça azaltılsa da modern
biyometri yöntemlerinin uygulanamadığı gözlerde ultrasonik biyometri ile aksiyel uzunluk hesaplanması tatmin edici refraktif sonuçlar
sağlayabilmektedir.

Etik Beyan

Çalışma için Ordu Universitesi Tıp Fakültesi İnsan Araştırmaları Etik Kurulu’ndan etik onayı alındı (karar no:2023/257, tarih:13.10.2023), çalışma Helsinki Bildirgesi prensiplerine uygun olarak yürütüldü ve çalışma öncesi tüm hastalardan veya hasta yakınlarından aydınlatılmış onam alındı.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • 1. Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472-485. doi:10.1111/j.1755- 3768.2007.00879.x
  • 2. Kraff MC, Sanders DR, Lieberman HL. Determination of intraocular lens power: a comparison with and without ultrasound. Ophthalmic Surg. 1978;9(1):81-84.
  • 3. Falhar M, Rehák J. The contact and immersion ultrasound methods compared using the ray tracing method. Opt Appl. 2010;40(1):77-92.
  • 4. Chylack LT Jr, Leske MC, McCarthy D, Khu PM, Kashiwagi T, Sperduto, R. Lens Opacities Classification System II (LOCS II). Arch Ophthalmol. 1989;107:991-997. doi:10.1001/archopht. 1989.01070020053028
  • 5. Lee AC, Qazi MA, Pepose JS. Biometry and intraocular lens power calculation. Curr Opin Ophthalmol. 2008;19(1):13-17. doi:10.1097/ICU.0b013e3282f1c5ad
  • 6. Sahin A, Hamrah P. Clinically relevant biometry. Curr Opin Ophthalmol. 2012;23(1):47-53. doi:10.1097/ICU.0b013e32834cd63e
  • 7. Moshirfar M, Buckner B, Ronquillo YC, Hofstedt D. Biometry in cataract surgery: a review of the current literature. Curr Opin Ophthalmol. 2019;30(1):9-12. doi:10.1097/ ICU.0000000000000536
  • 8. Hoffmann PC, Hütz WW, Eckhardt HB, Heuring AH. [Intraocular lens calculation and ultrasound biometry: immersion and contact procedures]. Klin Monbl Augenheilkd. 1998;213(3):161- 165. doi:10.1055/s-2008-1034967
  • 9. Ossoinig KC. Standardized Echography. Int Ophthalmol Clin. 1979;19(4):127-210. doi:10.1097/00004397-197901940-00007
  • 10. Olsen T, Nielsen PJ. Immersion versus contact technique in the measurement of axial length by ultrasound. Acta Ophthalmol. 2009;67(1):101-102. doi:10.1111/j.1755-3768.1989. tb00732.x
  • 11. Hennessy MP, Chan DG. Contact versus immersion biometry of axial length before cataract surgery. J Cataract Refract Surg. 2003;29(11):2195-2198. doi:10.1016/S0886-3350(03)00224-4
  • 12. Lam AKC, Chan R, Pang PCK. The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster. Ophthalmic Physiol Opt. 2001;21(6):477-483. doi:10.1046/j.1475-1313.2001.00611.x
  • 13. Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, Schild G, Rainer G, Maca S, Petternel V, Lackner B, Drexler W. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg. 2003;29(10):1950-1955. doi:10.1016/ S0886-3350(03)00243-8
  • 14. Gantenbein CPA, Ruprecht KW. Comparaison entre biométrie optique et acoustique de l’oeil. J Fr Ophtalmol. 2004;27(10):1121-1127. doi:10.1016/S0181-5512(04)96280-8
  • 15. El Chehab H, Giraud J-M, Le Corre A, Chave N, Durand F, Kuter S, Ract-Madoux G, Swalduz B, Mourgues G, Dot C. [Comparison between Lenstar LS 900 non-contact biometry and OcuScan RXP contact biometry for task delegation]. J Fr Ophtalmol. 2011;34(3):175-180. doi:10.1016/j.jfo.2010.09.026
  • 16. Aktas S, Aktas H, Tetikoglu M, Sagdk HM, Özcura F. Refractive Results Using a New Optical Biometry Device: Comparison With Ultrasound Biometry Data. Medicine (Baltimore). 2015;94(48):e2169. doi:10.1097/MD.0000000000002169
  • 17. Ademola-Popoola DS, Nzeh DA, Saka SE, Olokoba LB, Obajolowo TS. Comparison of ocular biometry measurements by applanation and immersion A-scan techniques. J Curr Ophthalmol. 2015;27(3-4):110-114. doi:10.1016/j.joco.2015.12.002
  • 18. Aydin R, Karaman Erdur S, Serefoglu Cabuk K, Karahan E, Kaynak S. Comparision of Optical Low Coherence Reflectometry Versus Ultrasonic Biometry in High Hypermetropia. Eye Contact Lens Sci Clin Pract. 2018;44(1):S115-S117. doi:10.1097/ICL.0000000000000350
  • 19. Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye. 2002;16(5):552-556. doi:10.1038/sj.eye. 6700157
  • 20. Hill W, Angeles R, Otani T. Evaluation of a new IOLMaster algorithm to measure axial length. J Cataract Refract Surg. 2008;34(6):920-924. doi:10.1016/j.jcrs.2008.02.021
  • 21. Wilson ME, Trivedi RH. Axial length measurement techniques in pediatric eyes with cataract. Saudi J Ophthalmol. 2012;26(1):13-17. doi:10.1016/j.sjopt.2011.11.002
  • 22. Pongsachareonnont P, Tangjanyatam S. Accuracy of axial length measurements obtained by optical biometry and acoustic biometry in rhegmatogenous retinal detachment: a prospective study. Clin Ophthalmol. 2018;Volume 12:973-980. doi:10.2147/ OPTH.S165875
  • 23. Kapoor M, Venkatesh P, Chawla R, Temkar S, Aggarwal E. Simplifying biometry in oil-filled eyes: A novel formula for axial length calculation in eyes with 1000 cSt silicone oil. Indian J Ophthalmol. 2023;71(6):2466-2468. doi:10.4103/ijo.IJO_2187_22
  • 24. Kimura S, Hosokawa MM, Shiode Y, Matoba R, Kanzaki Y, Goto Y, Kanenaga K, Suzuki E, Morizane Y. Accuracy of ultrasound vs. Fourier-domain optic biometry for measuring preoperative axial length in cases of rhegmatogenous retinal detachment. Jpn J Ophthalmol. August 2023:[Online ahead of print]. doi:10.1007/s10384-023-01018-2
  • 25. Brodie SE, Gupta PC, Irsch K, et al. Basic and Clinical Science Course, Section 3: Clinical Optics. In: Korn BS, Burkat CN, Carter KD, et al., eds. American Academy of Ophthalmology. San Francisco, CA: American Academy of Ophthalmology; 2018:239-266.
  • 26. Goel S, Chua C, Butcher M, Jones CA, Bagga P, Kotta S. Laser vs ultrasound biometry—a study of intra- and interobserver variability. Eye. 2004;18(5):514-518. doi:10.1038/sj.eye.6700705
  • 27. Martín-Serrano MJ, Roman-Ortiz C, Villa-Sáez ML, Labrador- Castellanos MP, Blanco-Carrasco R, Lozano-Ballesteros F, Pedraza-Martín C, José-Herrero MT, López-Ropero AM, Tenías Burillo JM. Concordance and Interchangeability of Biometric Measurements of Ocular Axial Length in Patients Awaiting Cataract Surgery. Eur J Ophthalmol. 2014;24(1):29-34. doi:10.5301/ejo.5000318
  • 28. Donaldson K, Fernández-Vega-Cueto L, Davidson R, Dhaliwal D, Hamilton R, Jackson M, Patterson L, Stonecipher K; ASCRS Refractive–Cataract Surgery Subcommittee. Perioperative assessment for refractive cataract surgery. J Cataract Refract Surg. 2018;44(5):642-653. doi:10.1016/j.jcrs.2018.02.022
  • 29. Symes RJ, Say MJ, Ursell PG. Scheimpflug keratometry versus conventional automated keratometry in routine cataract surgery. J Cataract Refract Surg. 2010;36(7):1107-1114. doi: 10.1016/j.jcrs.2009.11.026
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Cerrahi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Enes Atalay 0000-0002-2718-9080

Tuna Buyuktepe 0000-0002-2383-0029

Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 15 Ekim 2024
Kabul Tarihi 23 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

Vancouver Atalay E, Buyuktepe T. Katarakt Cerrahisi Öncesi Göz İçi Lens Gücü Hesaplamasında Ultrasonik Biyometri: Postoperatif Refraktif Sonuçlar. Med J West Black Sea. 2025;9(2):142-9.

Zonguldak Bülent Ecevit Üniversitesi Tıp Fakültesi’nin bilimsel yayım organıdır.

Ulusal ve uluslararası tüm kurum ve kişilere elektronik olarak ücretsiz ulaşmayı hedefleyen hakemli bir dergidir.

Dergi yılda üç kez olmak üzere Nisan, Ağustos ve Aralık aylarında yayımlanır.

Derginin yayım dili Türkçe ve İngilizcedir.