Araştırma Makalesi
BibTex RIS Kaynak Göster

Sığır embriyolarında 2G/3G cep telefonu sinyallerinin in vitro fertilizasyon, embriyo gelişimi ve cinsiyet dağılımı üzerine etkileri

Yıl 2023, , 427 - 437, 17.08.2023
https://doi.org/10.37908/mkutbd.1205044

Öz

Bin yıllık insan evrimi boyunca eşit olan erkek/dişi oranı, son yıllarda bir şekilde bu dengeden uzaklaşmaktadır. Yapılan bu çalışmanın amacı, cep telefonlarından yayılan elektromanyetik radyasyonun sığır embriyolarında in vitro fertilizasyon, embriyo gelişimi ve cinsiyet farklılaşması üzerindeki etkilerinin araştırılması olmuştur. Kesimhaneden alınan ovaryumlardan elde edilen MII oositler deneme materyali olarak kullanılmıştır. İnkübatör içerisine yerleştirilen bir cep telefonunun belirli aralıklarla çaldırılması ile gametler elektromanyetik alana maruz bırakılmıştır. Embriyo gelişim aşamaları, bölünme ve 7-8’inci günlerdeki blastosist gelişim aşamaları bakımından takip edilmiştir. İn vitro koşullarda üretilen embriyolarda cinsiyet tayini polimeraz zincir reaksiyon (PCR) ile belirlenmiştir. Sonuç olarak radyofrekans elektromanyetik alanların embriyo gelişimi üzerine olumsuz bir etkisinin olmadığı, ancak radyofrekans elektromanyetik alanların blastomer sayısını, embriyo gelişim aşamasını ve embriyo kalitesini azaltabileceği belirlenmiştir. Ayrıca elektromanyetik alanlara maruz kalmanın erkek embriyoların yaşama şansını büyük ölçüde azalttığı tespit edilmiştir.

Kaynakça

  • Antonopoulos, A., Yang, B., Stamm, A., Heller, W.D., & Obe, G. (1995). Cytological effects of 50 Hz electromagnetic fields on human lymphocytes in vitro. Mutation Research, 346 (3), 151-157. https://doi.org/10.1016/0165-7992(95)90047-0
  • Arav, A., Aroyo, A., Yavin, S., & Roth, Z. (2008). Prediction of embryonic developmental competence by time-lapse observation and 'shortest-half' analysis. Reproductive BioMedicine Online, 17 (5), 669-675. https://doi.org/10.1016/s1472-6483(10)60314-8
  • Auger, N., Joseph, D., Goneau, M., & Daniel, M. (2011). The relationship between residential proximity to extremely low frequency power transmission lines and adverse birth outcomes. Journal of Epidemiology and Community Health, 65 (1), 83-85. https://doi.org/10.1136/jech.2009.097709
  • Baste, V., Moen, B.E., Oftedal, G., Strand, L.A., Bjørge, L., & Mild, K.H. (2012). Pregnancy outcomes after paternal radiofrequency field exposure aboard fast patrol boats. Journal of Occupational and Environmental Medicine, 54 (4), 431-438. https://doi.org/10.1097/JOM.0b013e3182445003
  • Boni, R., Cuomo, A., & Tosti, E. (2002). Developmental potential in bovine oocytes is related to cumulus-oocyte complex grade, calcium current activity, and calcium stores. Biology of Reproduction, 66 (3), 836-842. https://doi.org/10.1095/biolreprod66.3.836
  • Buchner, K., Eger, H., & Hopper, J. (2014). Reduzierte Fruchtbarkeit und vermehrte Missbildungen unter Mobilfunkstrahlung- Dokumentation aus einem landwirtschaftlichen Nutzbetrieb. Umwelt - Medizin – Gesellschaft, 27 (3), 182-191.
  • Gardner, D.K., Lane, M., & Schoolcraft, W.B. (2000). Culture and transfer of viable blastocysts: a feasible proposition for human IVF. Human Reproduction, 15 (6), 9-23.
  • Grant, G., Cadossi, R., & Steinberg, G. (1994). Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Bioelectromagnetics, 15 (3), 205-216. https://doi.org/10.1002/bem.2250150305
  • Gutiérrez-Adán, A., Lonergan, P., Rizos, D., Ward, F.A., Boland, M.P., Pintado, B., & de la Fuente, J. (2001). Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology, 55 (5), 1117-1126. https://doi.org/10.1016/s0093-691x(01)00471-x
  • Gye, M.C., & Park, C.J. (2012). Effect of electromagnetic field exposure on the reproductive system. Clinical and Experimental Reproductive Medicine, 39 (1), 1-9. https://doi.org/10.5653/cerm.2012.39.1.1
  • Hansen, P.J, Sosa F., & Xiao, Y. (2019). Sexing Bbvine preimplantation embryos by PCR. https://animal.ifas.ufl.edu/media/animalifasufledu/hansen-lab-website/lab-protocols/Sexing-bovine-preimplantation-embryos-by-PCR%C3%82%C2%A0.pdf (Last access date: 27.05.2023).
  • Irgens, A., Krüger, K., Skorve, A.H., & Irgens, L.M. (1997). Male proportion in offspring of parents exposed to strong static and extremely low-frequency electromagnetic fields in Norway. American Journal of Industrial Medicine, 32 (5), 557-561. https://doi.org/10.1002/(SICI)1097-0274(199711)32:5%3C557::AID-AJIM19%3E3.0.CO;2-1
  • James, W.H. (1995). Sex ratio of offspring of female physiotherapists exposed to low-level high-frequency electromagnetic radiation. Scandinavian Journal of Work, Environment & Health, 21 (1), 68-69. https://doi.org/10.5271/sjweh.1370
  • Jauchem, J.R. (2008). Effects of low-level radio-frequency (3kHz to 300GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. International Journal of Hygiene and Environmental Health, 211 (1-2), 1-29. https://doi.org/10.1016/j.ijheh.2007.05.001
  • Katsir, G., & Parola, A.H. (1998). The enhanced cell proliferation caused by sinusoidaly varying magnetic field is suppressed by radical scavengers. 20th Annual Meeting of the Bioelectromagnetics Society, St Pete Beach, FL.
  • Lechniak, D., Pers-Kamczyc, E., & Pawlak, P. (2008). Timing of the first zygotic cleavage as a marker of developmental potential of mammalian embryos. Reproductive Biology, 8 (1), 23-42. https://doi.org/10.1016/s1642-431x(12)60002-3
  • Lee, M.J., Lee, R.K., Lin, M.H., & Hwu, Y.M. (2012). Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles. Journal of Assisted Reproduction and Genetics, 29 (8), 745-750. https://doi.org/10.1007/s10815-012-9777-z
  • Lotfi, A., & Shahryar, H.A. (2010). Effects of exposure to 900MHz electromagnetic fields emitted by cellular phone on secondary sex-ratio of male Syrian Hamsters (Mesocricetus Auratus). Advances in Environmental Biology, 4 (2), 305-307.
  • Loureiro, B., Brad, A.M., & Hansen, P.J. (2007). Heat shock and tumor necrosis factor-alpha induce apoptosis in bovine preimplantation embryos through a caspase-9-dependent mechanism. Reproduction, 133 (6), 1129-1137. https://doi.org/10.1530/rep-06-0307
  • Moreira, F., Paula-Lopes, F.F., Hernandez-Ceron, J., Moore, K., & Hansen, P.J. (2004). Protocol to count cell number of preimplantation embryos using nuclear staining with Hoechst 33342 or DAPI. https://animal.ifas.ufl.edu/media/animalifasufledu/hansen-lab-website/lab-protocols/Cell-Number-Counting-in-Preimplantation-Embryos.pdf (Last access date: 20.05.2023).
  • Park, J.H., Lee, J.H., Choi, K.M., Joung, S.Y., Kim, J.Y., Chung, G.M., Hin, D.I., & Im, K.S. (2001). Rapid sexing of preimplantation bovine embryo using consecutive and multiplex polymerase chain reaction (PCR) with biopsied single blastomere. Theriogenology, 55 (9), 1843-1853. https://doi.org/10.1016/s0093-691x(01)00526-x.
  • Parrish, J.J. (2014). Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology, 81 (1), 67-73. https://doi.org/10.1016/j.theriogenology.2013.08.005
  • Piccinetti, C.C., De Leo, A., Cosoli, G., Scalise, L., Randazzo, B., Cerri, G., & Olivotto, I. (2018). Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: A multidisciplinary study. Ecotoxicology and Environmental Safety, 154, 268-279. https://doi.org/10.1016/j.ecoenv.2018.02.053
  • Pourlis, A.F. (2009). Reproductive and developmental effects of EMF in vertebrate animal models. Pathophysiology, 16 (2-3), 179-189. https://doi.org/10.1016/j.pathophys.2009.01.010
  • Roychoudhury, S., Jedlicka, J., Parkanyi, V., Rafay, J., Ondruska, L., Massanyi, P., & Bulla, J. (2009). Influence of a 50 Hz extra low frequency electromagnetic field on spermatozoa motility and fertilization rates in rabbits. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 44 (10), 1041-1047. https://doi.org/10.1080/10934520902997029
  • Soto, P., Natzke, R.P., & Hansen, P.J. (2003). Actions of tumor necrosis factor-alpha on oocyte maturation and embryonic development in cattle. American Journal of Reproductive Immunology, 50 (5), 380-388. https://doi.org/10.1034/j.1600-0897.2003.00101.x
  • Stensen, M.H., Tanbo, T., Storeng, R., Byholm, T., & Fèdorcsak, P. (2010). Routine morphological scoring systems in assisted reproduction treatment fail to reflect age-related impairment of oocyte and embryo quality. Reproductive BioMedicine Online, 21 (1), 118-125. https://doi.org/10.1016/j.rbmo.2010.03.018
  • Velizarov, S., Raskmark, P., & Kwee, S. (1999). The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochemistry and Bioenergetics, 48 (1), 177-180. https://doi.org/10.1016/s0302-4598(98)00238-4
  • Wei, Y., Xiaolin, H., & Tao, S. (2008). Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells. Electromagnetic Biology and Medicine, 27 (3), 298-311. https://doi.org/10.1080/15368370802289604
  • West, R.W., Hinson, W.G., Lyle, D.B., & Swicord, M.L. (1994). Enhancement of anchorage-independent growth in JB6 cells exposed to 60 Hertz magnetic fields. Bioelectrochemistry and Bioenergetics, 34 (1), 39-43. https://doi.org/https://doi.org/10.1016/0302-4598(94)80007-3
  • Wolf, F.I., Torsello, A., Tedesco, B., Fasanella, S., Boninsegna, A., D'Ascenzo, M., Grassi, C., Azzena, G.B., & Cittadini, A. (2005). 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochimica et Biophysica Acta, 1743 (1-2), 120-129. https://doi.org/10.1016/j.bbamcr.2004.09.005

Effects of exposure to 2G/3G cell phone radiation on in vitro fertilization, subsequent development and sex distribution of bovine embryos

Yıl 2023, , 427 - 437, 17.08.2023
https://doi.org/10.37908/mkutbd.1205044

Öz

During the thousand years of human evolution, the male to female ratio was practically equal, but it has recently changed in some way. The aim of this study was to investigate the effects of electromagnetic radiation from mobile phones on in vitro fertilization, embryo growth, and sex differentiation in cattle embryos. MII oocytes obtained from ovaries taken from slaughterhouse were used as research material. Gametes were exposed to electromagnetic fields by having a mobile phone inside the incubator that would periodically ring. On days 7 and 8, blastocyst development stages and embryo cleavage rates were evaluated. Additionally, the rates of cleavage for different time intervals after in vitro fertilization were noted. The sex determination of the embryos produced in vitro was determined by using polymerase chain reaction (PCR). As a result, it was found that exposure to radiofrequency electromagnetic fields could mainly reduce blastomere count, embryo diameter, and embryo quality rather than a having major adverse effect on the development of cattle embryos. Additionally, it was shown that exposure to electromagnetic fields appears to drastically reduce the chances of male survival.

Kaynakça

  • Antonopoulos, A., Yang, B., Stamm, A., Heller, W.D., & Obe, G. (1995). Cytological effects of 50 Hz electromagnetic fields on human lymphocytes in vitro. Mutation Research, 346 (3), 151-157. https://doi.org/10.1016/0165-7992(95)90047-0
  • Arav, A., Aroyo, A., Yavin, S., & Roth, Z. (2008). Prediction of embryonic developmental competence by time-lapse observation and 'shortest-half' analysis. Reproductive BioMedicine Online, 17 (5), 669-675. https://doi.org/10.1016/s1472-6483(10)60314-8
  • Auger, N., Joseph, D., Goneau, M., & Daniel, M. (2011). The relationship between residential proximity to extremely low frequency power transmission lines and adverse birth outcomes. Journal of Epidemiology and Community Health, 65 (1), 83-85. https://doi.org/10.1136/jech.2009.097709
  • Baste, V., Moen, B.E., Oftedal, G., Strand, L.A., Bjørge, L., & Mild, K.H. (2012). Pregnancy outcomes after paternal radiofrequency field exposure aboard fast patrol boats. Journal of Occupational and Environmental Medicine, 54 (4), 431-438. https://doi.org/10.1097/JOM.0b013e3182445003
  • Boni, R., Cuomo, A., & Tosti, E. (2002). Developmental potential in bovine oocytes is related to cumulus-oocyte complex grade, calcium current activity, and calcium stores. Biology of Reproduction, 66 (3), 836-842. https://doi.org/10.1095/biolreprod66.3.836
  • Buchner, K., Eger, H., & Hopper, J. (2014). Reduzierte Fruchtbarkeit und vermehrte Missbildungen unter Mobilfunkstrahlung- Dokumentation aus einem landwirtschaftlichen Nutzbetrieb. Umwelt - Medizin – Gesellschaft, 27 (3), 182-191.
  • Gardner, D.K., Lane, M., & Schoolcraft, W.B. (2000). Culture and transfer of viable blastocysts: a feasible proposition for human IVF. Human Reproduction, 15 (6), 9-23.
  • Grant, G., Cadossi, R., & Steinberg, G. (1994). Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Bioelectromagnetics, 15 (3), 205-216. https://doi.org/10.1002/bem.2250150305
  • Gutiérrez-Adán, A., Lonergan, P., Rizos, D., Ward, F.A., Boland, M.P., Pintado, B., & de la Fuente, J. (2001). Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology, 55 (5), 1117-1126. https://doi.org/10.1016/s0093-691x(01)00471-x
  • Gye, M.C., & Park, C.J. (2012). Effect of electromagnetic field exposure on the reproductive system. Clinical and Experimental Reproductive Medicine, 39 (1), 1-9. https://doi.org/10.5653/cerm.2012.39.1.1
  • Hansen, P.J, Sosa F., & Xiao, Y. (2019). Sexing Bbvine preimplantation embryos by PCR. https://animal.ifas.ufl.edu/media/animalifasufledu/hansen-lab-website/lab-protocols/Sexing-bovine-preimplantation-embryos-by-PCR%C3%82%C2%A0.pdf (Last access date: 27.05.2023).
  • Irgens, A., Krüger, K., Skorve, A.H., & Irgens, L.M. (1997). Male proportion in offspring of parents exposed to strong static and extremely low-frequency electromagnetic fields in Norway. American Journal of Industrial Medicine, 32 (5), 557-561. https://doi.org/10.1002/(SICI)1097-0274(199711)32:5%3C557::AID-AJIM19%3E3.0.CO;2-1
  • James, W.H. (1995). Sex ratio of offspring of female physiotherapists exposed to low-level high-frequency electromagnetic radiation. Scandinavian Journal of Work, Environment & Health, 21 (1), 68-69. https://doi.org/10.5271/sjweh.1370
  • Jauchem, J.R. (2008). Effects of low-level radio-frequency (3kHz to 300GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. International Journal of Hygiene and Environmental Health, 211 (1-2), 1-29. https://doi.org/10.1016/j.ijheh.2007.05.001
  • Katsir, G., & Parola, A.H. (1998). The enhanced cell proliferation caused by sinusoidaly varying magnetic field is suppressed by radical scavengers. 20th Annual Meeting of the Bioelectromagnetics Society, St Pete Beach, FL.
  • Lechniak, D., Pers-Kamczyc, E., & Pawlak, P. (2008). Timing of the first zygotic cleavage as a marker of developmental potential of mammalian embryos. Reproductive Biology, 8 (1), 23-42. https://doi.org/10.1016/s1642-431x(12)60002-3
  • Lee, M.J., Lee, R.K., Lin, M.H., & Hwu, Y.M. (2012). Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles. Journal of Assisted Reproduction and Genetics, 29 (8), 745-750. https://doi.org/10.1007/s10815-012-9777-z
  • Lotfi, A., & Shahryar, H.A. (2010). Effects of exposure to 900MHz electromagnetic fields emitted by cellular phone on secondary sex-ratio of male Syrian Hamsters (Mesocricetus Auratus). Advances in Environmental Biology, 4 (2), 305-307.
  • Loureiro, B., Brad, A.M., & Hansen, P.J. (2007). Heat shock and tumor necrosis factor-alpha induce apoptosis in bovine preimplantation embryos through a caspase-9-dependent mechanism. Reproduction, 133 (6), 1129-1137. https://doi.org/10.1530/rep-06-0307
  • Moreira, F., Paula-Lopes, F.F., Hernandez-Ceron, J., Moore, K., & Hansen, P.J. (2004). Protocol to count cell number of preimplantation embryos using nuclear staining with Hoechst 33342 or DAPI. https://animal.ifas.ufl.edu/media/animalifasufledu/hansen-lab-website/lab-protocols/Cell-Number-Counting-in-Preimplantation-Embryos.pdf (Last access date: 20.05.2023).
  • Park, J.H., Lee, J.H., Choi, K.M., Joung, S.Y., Kim, J.Y., Chung, G.M., Hin, D.I., & Im, K.S. (2001). Rapid sexing of preimplantation bovine embryo using consecutive and multiplex polymerase chain reaction (PCR) with biopsied single blastomere. Theriogenology, 55 (9), 1843-1853. https://doi.org/10.1016/s0093-691x(01)00526-x.
  • Parrish, J.J. (2014). Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology, 81 (1), 67-73. https://doi.org/10.1016/j.theriogenology.2013.08.005
  • Piccinetti, C.C., De Leo, A., Cosoli, G., Scalise, L., Randazzo, B., Cerri, G., & Olivotto, I. (2018). Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: A multidisciplinary study. Ecotoxicology and Environmental Safety, 154, 268-279. https://doi.org/10.1016/j.ecoenv.2018.02.053
  • Pourlis, A.F. (2009). Reproductive and developmental effects of EMF in vertebrate animal models. Pathophysiology, 16 (2-3), 179-189. https://doi.org/10.1016/j.pathophys.2009.01.010
  • Roychoudhury, S., Jedlicka, J., Parkanyi, V., Rafay, J., Ondruska, L., Massanyi, P., & Bulla, J. (2009). Influence of a 50 Hz extra low frequency electromagnetic field on spermatozoa motility and fertilization rates in rabbits. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 44 (10), 1041-1047. https://doi.org/10.1080/10934520902997029
  • Soto, P., Natzke, R.P., & Hansen, P.J. (2003). Actions of tumor necrosis factor-alpha on oocyte maturation and embryonic development in cattle. American Journal of Reproductive Immunology, 50 (5), 380-388. https://doi.org/10.1034/j.1600-0897.2003.00101.x
  • Stensen, M.H., Tanbo, T., Storeng, R., Byholm, T., & Fèdorcsak, P. (2010). Routine morphological scoring systems in assisted reproduction treatment fail to reflect age-related impairment of oocyte and embryo quality. Reproductive BioMedicine Online, 21 (1), 118-125. https://doi.org/10.1016/j.rbmo.2010.03.018
  • Velizarov, S., Raskmark, P., & Kwee, S. (1999). The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochemistry and Bioenergetics, 48 (1), 177-180. https://doi.org/10.1016/s0302-4598(98)00238-4
  • Wei, Y., Xiaolin, H., & Tao, S. (2008). Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells. Electromagnetic Biology and Medicine, 27 (3), 298-311. https://doi.org/10.1080/15368370802289604
  • West, R.W., Hinson, W.G., Lyle, D.B., & Swicord, M.L. (1994). Enhancement of anchorage-independent growth in JB6 cells exposed to 60 Hertz magnetic fields. Bioelectrochemistry and Bioenergetics, 34 (1), 39-43. https://doi.org/https://doi.org/10.1016/0302-4598(94)80007-3
  • Wolf, F.I., Torsello, A., Tedesco, B., Fasanella, S., Boninsegna, A., D'Ascenzo, M., Grassi, C., Azzena, G.B., & Cittadini, A. (2005). 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochimica et Biophysica Acta, 1743 (1-2), 120-129. https://doi.org/10.1016/j.bbamcr.2004.09.005
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ali Galip Önal 0000-0002-1020-1151

Yusuf Ziya Güzey 0000-0002-4900-6038

Erken Görünüm Tarihi 30 Temmuz 2023
Yayımlanma Tarihi 17 Ağustos 2023
Gönderilme Tarihi 15 Kasım 2022
Kabul Tarihi 11 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Önal, A. G., & Güzey, Y. Z. (2023). Effects of exposure to 2G/3G cell phone radiation on in vitro fertilization, subsequent development and sex distribution of bovine embryos. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28(2), 427-437. https://doi.org/10.37908/mkutbd.1205044

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download