Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhancing sugar beet yield and soil microbial activity under water-limited conditions through mycorrhizal and bacterial inoculations

Yıl 2025, Cilt: 30 Sayı: 2, 347 - 364, 21.08.2025
https://doi.org/10.37908/mkutbd.1608245

Öz

Aim of this study is to investigate the effects of mycorrhizal and bacterial inoculations on sugar beet yield and soil microbial activity under varying water stress conditions. The field experiment was conducted over two successive years with three different irrigation levels: 33% (I1), 66% (I2), and 100% (I3). Mycorrhiza (Mikostar BTH-100) containing Glomus intraradices, Glomus mosseae, Glomus fasciculatum, and Glomus etunicatum, along with Bradyrhizobium japonicum bacteria, were applied to seeds during planting. Results showed that both applications significantly improved sugar beet yield and soil microbial activity compared to the control treatment. Mycorrhiza was particularly effective under full irrigation (I3), while bacterial inoculations showed stronger effects under moderate and low irrigation levels (I2 and I1, respectively). The highest yield (10130 kg/da) was observed under full irrigation with mycorrhiza treatment, while the lowest yield (3917.33 kg/da) was recorded in the control group under low irrigation. Soil microbial analyses revealed significant enhancements in CO₂ respiration, dehydrogenase activity (DHA), and microbial biomass carbon (MBC) in treated soils. These findings highlight the potential of mycorrhiza and bacteria to enhance plant performance and soil health under water-limited conditions, contributing to sustainable agricultural practices.

Proje Numarası

18148

Kaynakça

  • Begum, N., Wang, L., Ahmad, H., Akhtar, K., Roy, R., Khan, M.I., & Zhao, T. (2022). Co-inoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microbial Ecology, 1-18. https://doi.org/10.1007/s00248-021-01815-7
  • Behrooz, A., Vahdati, K., Rejali, F., Lotfi, M., Sarikhani, S., & Leslie, C. (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience, 54 (6), 1087-1092. https://doi.org/10.21273/HORTSCI13961-19
  • Bender, S.F., Wagg, C., & van der Heijden, M.G. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31 (6), 440-452. 10.1016/j.tree.2016.02.016
  • Bhattacharyya, P.N., & Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
  • Braghiere, R.K., Fisher, J.B., Fisher, R.A., Shi, M., Steidinger, B.S., Sulman, B. N., ... & Phillips, R. P. (2021). Mycorrhizal distributions impact global patterns of carbon and nutrient cycling. Geophysical Research Letters, 48 (19), e2021GL094514. https://doi.org/10.1029/2021GL094514
  • Bogati, K., & Walczak, M. (2022). The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy, 12 (1), 189. https://doi.org/10.3390/agronomy12010189
  • Bojović, R., Popović, V., Popović, D., Prodanović, R., Đukić, R., Bošković, J., ... & Filipović, V. (2024). Economical sugar beet production: Biotechnological advances to ımprove yield in conditions of abiotic and biotic stress. Sugar Tech, 1-17. https://doi.org/10.1007/s12355-024-01461-6
  • Chang, C., Nasir, F., Ma, L., & Tian, C. (2017). Molecular communication and nutrient transfer of arbuscular mycorrhizal fungi, symbiotic nitrogen-fixing bacteria, and host plant in tripartite symbiosis. Legume Nitrogen Fixation in Soils with Low Phosphorus Availability: Adaptation and Regulatory Implication, 169-183. https://doi.org/10.1007/978-3-319-55729-8_9
  • Cao, M.A., Wang, P., Hashem, A., Wirth, S., Abd_Allah, E.F., & Wu, Q.S. (2021). Field inoculation of arbuscular mycorrhizal fungi improves fruit quality and root physiological activity of citrus. Agriculture, 11 (12), 1297. https://doi.org/10.3390/agriculture11121297
  • Çağlar, K.Ö. (1949). Toprak bilgisi. A.Ü. Zir. Fak. Yayınları:10, s 230.
  • Dinç, U., Şenol, S., Sayın, M., Kapur, S., Güzel, N., Derici, R., … Kara, E.E. (1988). Güneydoğu Anadolu Bölgesi Toprakları. (GAT): I. Harran Ovası. TÜBİTAK Tarım ve Ormancılık Araştırma Grubu Güdümlü Araştırma Projesi Kesin Raporu. Proje No: TOAG-534, Adana.
  • Drigo, B., Kowalchuk, G.A., & Van Veen, J.A. (2008). Climate change goes underground: effects of elevated atmospheric CO 2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils, 44, 667-679. https://doi.org/10.1007/s00374-008-0277-3
  • Ermiş, O. (1998). Bazı şeker pancarı (Beta vulgaris L.) çeşitlerinde seyreltme ve sıra üzerine mesafelerin verim ve kaliteye etkisi, Doktora Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, 21-22.
  • Farooq, M., Hussain, M., Ul-Allah, S., & Siddique, K.H. (2019). Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 219, 95-108. https://doi.org/10.1016/j.agwat.2019.04.010Get rights and content
  • Ghimire, R., Thapa, V.R., Acosta-Martinez, V., Schipanski, M., Slaughter, L.C., Fonte, S.J., ... & Noble Strohm, T. (2023). Soil health assessment and management framework for water-limited environments: examples from the Great Plains of the USA. Soil Systems, 7 (1), 22. https://doi.org/10.3390/soilsystems7010022
  • Hartmann, M., Frey, B., Mayer, J., Mäder, P., & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 9 (5), 1177-1194. https://doi.org/10.1038/ismej.2014.210
  • Hektaş Tarım (2023). Türkiye’de Şeker Pancarı Hangi Bölgede Yetişir?. Erişim adresi: https://hektas.com.tr/blog/turkiye-de-seker-pancari-hangi-bolgede-yetisir
  • Hu, Y., Chen, J., Olesen, J.E., van Groenigen, K.J., Hui, D., He, X., ... & Deng, Q. (2024). Mycorrhizal association controls soil carbon-degrading enzyme activities and soil carbon dynamics under nitrogen addition: A systematic review. Science of the Total Environment, 175008. https://doi.org/10.1016/j.scitotenv.2024.175008
  • Isermayer, H. (1952). Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Böden. Z. Pflanzenaehr. Bodenkd, 5, 56-60. https://doi.org/10.1002/jpln.19520560107
  • James, D.W., Hanks, R.J., & Jurınak., J.J. (1982). Modern irrigated soils. Published by John Wiley and Sons Inc. New York USA.
  • Jia, X., Zhong, Y., Liu, J., Zhu, G., Shangguan, Z., & Yan, W. (2020). Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma, 366, 114256. https://doi.org/10.1016/j.geoderma.2020.114256
  • Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7 (3), 235-246. https://doi.org/10.1016/j.pbi.2004.03.014
  • Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: concept & review. Soil Biology and Biochemistry, 83, 184-199. https://doi.org/10.1016/j.soilbio.2015.01.025
  • Laranjeira, S., Fernandes-Silva, A., Reis, S., Torcato, C., Raimundo, F., Ferreira, L., ... & Marques, G. (2021). Inoculation of plant growth promoting bacteria and arbuscular mycorrhizal fungi improve chickpea performance under water deficit conditions. Applied Soil Ecology, 164, 103927. https://doi.org/10.1016/j.apsoil.2021.103927
  • Mickan, B.S., Abbott, L.K., Solaiman, Z.M., Mathes, F., Siddique, K.H., & Jenkins, S.N. (2019). Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biology and Fertility of Soils, 55, 53-66. https://doi.org/10.1007/s00374-018-1328-z
  • Mickan, B.S., Abbott, L.K., Stefanova, K., & Solaiman, Z.M. (2016). Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza, 26 (6), 565-574. https://doi.org/10.1007/s00572-016-0693-4
  • Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, 12 (4), 563-569. https://doi.org/10.1111/j.1438-8677.2009.00308.x
  • Mohamed, H.I., Sofy, M.R., Almoneafy, A.A., Abdelhamid, M.T., Basit, A., Sofy, A.R., ... & Abou-El-Enain, M.M. (2021). Role of microorganisms in managing soil fertility and plant nutrition in sustainable agriculture. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management, 93-114. https://doi.org/10.1007/978-3-030-66587-6_4
  • Mubarak, M.U., Zahir, M., Ahmad, S., & Wakeel, A. (2016). Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions. Journal of Integrative Agriculture, 15 (11), 2620-2626. https://doi.org/10.1016/S2095-3119(15)61252-7
  • Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. https://doi.org/10.1016/j.jplph.2014.08.019
  • Öhlinger, R. (1993). Bestimmung des Biomasse-Kohlenstoffs mittels Fumigation-Exstraktion. In:Schinner. F.. Öhlinger. R.. Kandler. E.. Margesin. R. (eds.). Bodenbiologische Arbeits methoden. 2. Auflage. Springer Verlag. Berlin. Heidelberg. https://doi.org/10.1007/978-3-642-77936-7
  • Rahimzadeh, S., & Pirzad, A. (2017). Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): A field study. Mycorrhiza, 27, 537-552. https://doi.org/10.1007/s00572-017-0775-y
  • Ranjan, A., Rajput, V.D., Prazdnova, E.V., Gurnani, M., Sharma, S., Bhardwaj, P., ... & Wong, M.H. (2024). Augmenting abiotic stress tolerance and root architecture: The function of phytohormone-producing PGPR and their interaction with nanoparticles. South African Journal of Botany, 167, 612-629. https://doi.org/10.1016/j.sajb.2024.02.041
  • Rawat, P., Shankhdhar, D., & Shankhdhar, S.C. (2020). Plant growth-promoting rhizobacteria: A booster for ameliorating soil health and agriculture production. Soil Health, 47-68. https://doi.org/10.1007/978-3-030-44364-1_3
  • Reinefeld, E., Emmerich, A., Baumgarten, G., Winner, C., & Beiβ, U. (1974). Zur voraussage des melassezuckers aus rübenanalysen. Zucker, 27, 2-15.
  • Rillig, M.C., & Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytologist, 171 (1), 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
  • Sarma, R.K. (2024). Harnessing the rhizosphere soil microbiome for sustainable agriculture: Recent technological developments and future challenges. In progress in soil microbiome research (pp. 481-500). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-71487-0_20
  • Schimel, J. (2023). Modeling ecosystem-scale carbon dynamics in soil: the microbial dimension. Soil Biology and Biochemistry, 178, 108948. https://doi.org/10.1016/j.soilbio.2023.108948
  • Sheteiwy, M.S., Ali, D.F.I., Xiong, Y.C., Brestic, M., Skalicky, M., Hamoud, Y.A., ... & El-Sawah, A.M. (2021). Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biology, 21, 1-21. https://doi.org/10.1186/s12870-021-02949-z
  • Silva, A.M.M., Feiler, H.P., Qi, X., de Araújo, V.L.V.P., Lacerda-Júnior, G.V., Fernandes-Júnior, P.I., & Cardoso, E.J.B.N. (2023). Impact of water shortage on soil and plant attributes in the presence of arbuscular mycorrhizal fungi from a harsh environment. Microorganisms, 11 (5), 1144. https://doi.org/10.3390/microorganisms11051144
  • Smith, S.E., & Read, D.J. (2010). Mycorrhizal symbiosis. Academic press.
  • Sun, Y., Wang, C., & Ruan, H. (2022). Increased microbial carbon and nitrogen use efficiencies under drought stress in a poplar plantation. Forest Ecology and Management, 519, 120341. https://doi.org/10.1016/j.foreco.2022.120341
  • Tarım ve Orman Bakanlığı (2023). "Tarımsal ekonomi ve politika geliştirme enstitüsü."
  • Thalman, A. (1967). Über die mikrobielle Aktivitaet und ihre Beziehungen zur Fruchtbarkeitsmerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenase aktivitaet (TTC-Reduktion) Diss. Giessen (FRG).
  • Treseder, K.K., & Lennon, J.T. (2015). Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews, 79 (2), 243-262. https://doi.org/10.1128/mmbr.00001-15
  • Ullah, N., Ditta, A., Imtiaz, M., Li, X., Jan, A.U., Mehmood, S., ... & Rizwan, M. (2021). Appraisal for organic amendments and plant growth‐promoting rhizobacteria to enhance crop productivity under drought stress: A review. Journal of Agronomy and Crop Science, 207 (5), 783-802. https://doi.org/10.1111/jac.12502
  • U.S. Salinity Laboratory Staff (1954). Diagnosis and Improvement of Saline and Alkaline Soils, USDA No: 6.
  • Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
  • Medina, A., & Azcón, R. (2010). Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. Journal of Soil Science and Plant Nutrition, 10 (3), 354-372. https://doi.org/10.3390/plants12173102
  • Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
  • Wang, R., Sun, Q., Wang, Y., Zheng, W., Yao, L., Hu, Y., & Guo, S. (2018). Contrasting responses of soil respiration and temperature sensitivity to land use types: Cropland vs. apple orchard on the Chinese Loess Plateau. Science of the Total Environment, 621, 425-433. https://doi.org/10.1016/j.scitotenv.2017.11.290
  • Wang, Z.G., Bi, Y.L., Jiang, B., Zhakypbek, Y., Peng, S.P., Liu, W.W., & Liu, H. (2016). Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China. Scientific Reports, 6 (1), 34336. https://doi.org/10.1038/srep34336
  • Wu, Q.S., Huang, Y.M., Li, Y., & He, X.H. (2014). Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere. International Journal of Agriculture & Biology, 16 (1).
  • Xu, C., Li, Y., Hu, X., Zang, Q., Zhuang, H., & Huang, L. (2022). The influence of organic and conventional cultivation patterns on physicochemical property, enzyme activity and microbial community characteristics of paddy soil. Agriculture, 12 (1), 121. https://doi.org/10.3390/agriculture12010121
  • Yang, H., Schroeder-Moreno, M., Giri, B., & Hu, S. (2018). Arbuscular mycorrhizal fungi and their responses to nutrient enrichment. Root Biology, 429-449. https://doi.org/10.1007/978-3-319-75910-4_17

Mikoriza ve bakteri uygulamalarının su stres koşulları altında şekerpancarı verimi ve toprak mikrobiyal aktivitesine etkisi

Yıl 2025, Cilt: 30 Sayı: 2, 347 - 364, 21.08.2025
https://doi.org/10.37908/mkutbd.1608245

Öz

Bu çalışmanın amacı, farklı su stres koşulları altında mikoriza ve bakteri uygulamalarının şekerpancarı verimi ve toprak mikrobiyal aktivitesi üzerindeki etkilerini araştırmaktadır. Deneme, iki yıl boyunca arazi koşullarında ve üç farklı sulama düzeyinde (I₁: %33, I₂: %66, I₃: %100) yürütülmüştür. Bradyrhizobium japonicum bakterileri ile birlikte Glomus intraradices, Glomus mosseae, Glomus fasciculatum ve Glomus etunicatum içeren Mycorrhiza (Mikostar BTH-100) ekim sırasında tohumlara uygulandı. Elde edilen sonuçlar, her iki uygulamanın da kontrole kıyasla şeker pancarı verimini ve toprak mikrobiyal aktivitesini önemli ölçüde geliştirdiğini gösterdi. Mikoriza özellikle tam sulama (I3) altında etkili iken, bakteriyel aşılamalar orta ve düşük sulama seviyeleri altında daha güçlü etkiler gösterdi (sırasıyla I2 ve I1). En yüksek verim (10130 kg/da) mikoriza tedavisi ile tam sulama altında gözlenirken, en düşük verim (3917.33 kg/da) düşük sulama altında kontrol grubuna kaydedildi. Toprak mikrobiyal analizleri, işlenmiş topraklarda CO₂ solunum, dehidrojenaz aktivitesi (DHA) ve mikrobiyal biyokütle karbonunda (MBC) önemli gelişmeler ortaya koymuştur. Bu bulgular mikoriza ve bakterilerin su sınırlı koşullar altında bitki performansını ve toprak sağlığını artırma potansiyelini vurgulamakta ve sürdürülebilir tarım uygulamalarına katkıda bulunmaktadır.

Proje Numarası

18148

Kaynakça

  • Begum, N., Wang, L., Ahmad, H., Akhtar, K., Roy, R., Khan, M.I., & Zhao, T. (2022). Co-inoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microbial Ecology, 1-18. https://doi.org/10.1007/s00248-021-01815-7
  • Behrooz, A., Vahdati, K., Rejali, F., Lotfi, M., Sarikhani, S., & Leslie, C. (2019). Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience, 54 (6), 1087-1092. https://doi.org/10.21273/HORTSCI13961-19
  • Bender, S.F., Wagg, C., & van der Heijden, M.G. (2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31 (6), 440-452. 10.1016/j.tree.2016.02.016
  • Bhattacharyya, P.N., & Jha, D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
  • Braghiere, R.K., Fisher, J.B., Fisher, R.A., Shi, M., Steidinger, B.S., Sulman, B. N., ... & Phillips, R. P. (2021). Mycorrhizal distributions impact global patterns of carbon and nutrient cycling. Geophysical Research Letters, 48 (19), e2021GL094514. https://doi.org/10.1029/2021GL094514
  • Bogati, K., & Walczak, M. (2022). The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy, 12 (1), 189. https://doi.org/10.3390/agronomy12010189
  • Bojović, R., Popović, V., Popović, D., Prodanović, R., Đukić, R., Bošković, J., ... & Filipović, V. (2024). Economical sugar beet production: Biotechnological advances to ımprove yield in conditions of abiotic and biotic stress. Sugar Tech, 1-17. https://doi.org/10.1007/s12355-024-01461-6
  • Chang, C., Nasir, F., Ma, L., & Tian, C. (2017). Molecular communication and nutrient transfer of arbuscular mycorrhizal fungi, symbiotic nitrogen-fixing bacteria, and host plant in tripartite symbiosis. Legume Nitrogen Fixation in Soils with Low Phosphorus Availability: Adaptation and Regulatory Implication, 169-183. https://doi.org/10.1007/978-3-319-55729-8_9
  • Cao, M.A., Wang, P., Hashem, A., Wirth, S., Abd_Allah, E.F., & Wu, Q.S. (2021). Field inoculation of arbuscular mycorrhizal fungi improves fruit quality and root physiological activity of citrus. Agriculture, 11 (12), 1297. https://doi.org/10.3390/agriculture11121297
  • Çağlar, K.Ö. (1949). Toprak bilgisi. A.Ü. Zir. Fak. Yayınları:10, s 230.
  • Dinç, U., Şenol, S., Sayın, M., Kapur, S., Güzel, N., Derici, R., … Kara, E.E. (1988). Güneydoğu Anadolu Bölgesi Toprakları. (GAT): I. Harran Ovası. TÜBİTAK Tarım ve Ormancılık Araştırma Grubu Güdümlü Araştırma Projesi Kesin Raporu. Proje No: TOAG-534, Adana.
  • Drigo, B., Kowalchuk, G.A., & Van Veen, J.A. (2008). Climate change goes underground: effects of elevated atmospheric CO 2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils, 44, 667-679. https://doi.org/10.1007/s00374-008-0277-3
  • Ermiş, O. (1998). Bazı şeker pancarı (Beta vulgaris L.) çeşitlerinde seyreltme ve sıra üzerine mesafelerin verim ve kaliteye etkisi, Doktora Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, 21-22.
  • Farooq, M., Hussain, M., Ul-Allah, S., & Siddique, K.H. (2019). Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 219, 95-108. https://doi.org/10.1016/j.agwat.2019.04.010Get rights and content
  • Ghimire, R., Thapa, V.R., Acosta-Martinez, V., Schipanski, M., Slaughter, L.C., Fonte, S.J., ... & Noble Strohm, T. (2023). Soil health assessment and management framework for water-limited environments: examples from the Great Plains of the USA. Soil Systems, 7 (1), 22. https://doi.org/10.3390/soilsystems7010022
  • Hartmann, M., Frey, B., Mayer, J., Mäder, P., & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 9 (5), 1177-1194. https://doi.org/10.1038/ismej.2014.210
  • Hektaş Tarım (2023). Türkiye’de Şeker Pancarı Hangi Bölgede Yetişir?. Erişim adresi: https://hektas.com.tr/blog/turkiye-de-seker-pancari-hangi-bolgede-yetisir
  • Hu, Y., Chen, J., Olesen, J.E., van Groenigen, K.J., Hui, D., He, X., ... & Deng, Q. (2024). Mycorrhizal association controls soil carbon-degrading enzyme activities and soil carbon dynamics under nitrogen addition: A systematic review. Science of the Total Environment, 175008. https://doi.org/10.1016/j.scitotenv.2024.175008
  • Isermayer, H. (1952). Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Böden. Z. Pflanzenaehr. Bodenkd, 5, 56-60. https://doi.org/10.1002/jpln.19520560107
  • James, D.W., Hanks, R.J., & Jurınak., J.J. (1982). Modern irrigated soils. Published by John Wiley and Sons Inc. New York USA.
  • Jia, X., Zhong, Y., Liu, J., Zhu, G., Shangguan, Z., & Yan, W. (2020). Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma, 366, 114256. https://doi.org/10.1016/j.geoderma.2020.114256
  • Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7 (3), 235-246. https://doi.org/10.1016/j.pbi.2004.03.014
  • Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: concept & review. Soil Biology and Biochemistry, 83, 184-199. https://doi.org/10.1016/j.soilbio.2015.01.025
  • Laranjeira, S., Fernandes-Silva, A., Reis, S., Torcato, C., Raimundo, F., Ferreira, L., ... & Marques, G. (2021). Inoculation of plant growth promoting bacteria and arbuscular mycorrhizal fungi improve chickpea performance under water deficit conditions. Applied Soil Ecology, 164, 103927. https://doi.org/10.1016/j.apsoil.2021.103927
  • Mickan, B.S., Abbott, L.K., Solaiman, Z.M., Mathes, F., Siddique, K.H., & Jenkins, S.N. (2019). Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biology and Fertility of Soils, 55, 53-66. https://doi.org/10.1007/s00374-018-1328-z
  • Mickan, B.S., Abbott, L.K., Stefanova, K., & Solaiman, Z.M. (2016). Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil. Mycorrhiza, 26 (6), 565-574. https://doi.org/10.1007/s00572-016-0693-4
  • Miransari, M. (2010). Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biology, 12 (4), 563-569. https://doi.org/10.1111/j.1438-8677.2009.00308.x
  • Mohamed, H.I., Sofy, M.R., Almoneafy, A.A., Abdelhamid, M.T., Basit, A., Sofy, A.R., ... & Abou-El-Enain, M.M. (2021). Role of microorganisms in managing soil fertility and plant nutrition in sustainable agriculture. Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management, 93-114. https://doi.org/10.1007/978-3-030-66587-6_4
  • Mubarak, M.U., Zahir, M., Ahmad, S., & Wakeel, A. (2016). Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions. Journal of Integrative Agriculture, 15 (11), 2620-2626. https://doi.org/10.1016/S2095-3119(15)61252-7
  • Ortiz, N., Armada, E., Duque, E., Roldán, A., & Azcón, R. (2015). Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology, 174, 87-96. https://doi.org/10.1016/j.jplph.2014.08.019
  • Öhlinger, R. (1993). Bestimmung des Biomasse-Kohlenstoffs mittels Fumigation-Exstraktion. In:Schinner. F.. Öhlinger. R.. Kandler. E.. Margesin. R. (eds.). Bodenbiologische Arbeits methoden. 2. Auflage. Springer Verlag. Berlin. Heidelberg. https://doi.org/10.1007/978-3-642-77936-7
  • Rahimzadeh, S., & Pirzad, A. (2017). Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): A field study. Mycorrhiza, 27, 537-552. https://doi.org/10.1007/s00572-017-0775-y
  • Ranjan, A., Rajput, V.D., Prazdnova, E.V., Gurnani, M., Sharma, S., Bhardwaj, P., ... & Wong, M.H. (2024). Augmenting abiotic stress tolerance and root architecture: The function of phytohormone-producing PGPR and their interaction with nanoparticles. South African Journal of Botany, 167, 612-629. https://doi.org/10.1016/j.sajb.2024.02.041
  • Rawat, P., Shankhdhar, D., & Shankhdhar, S.C. (2020). Plant growth-promoting rhizobacteria: A booster for ameliorating soil health and agriculture production. Soil Health, 47-68. https://doi.org/10.1007/978-3-030-44364-1_3
  • Reinefeld, E., Emmerich, A., Baumgarten, G., Winner, C., & Beiβ, U. (1974). Zur voraussage des melassezuckers aus rübenanalysen. Zucker, 27, 2-15.
  • Rillig, M.C., & Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytologist, 171 (1), 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
  • Sarma, R.K. (2024). Harnessing the rhizosphere soil microbiome for sustainable agriculture: Recent technological developments and future challenges. In progress in soil microbiome research (pp. 481-500). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-71487-0_20
  • Schimel, J. (2023). Modeling ecosystem-scale carbon dynamics in soil: the microbial dimension. Soil Biology and Biochemistry, 178, 108948. https://doi.org/10.1016/j.soilbio.2023.108948
  • Sheteiwy, M.S., Ali, D.F.I., Xiong, Y.C., Brestic, M., Skalicky, M., Hamoud, Y.A., ... & El-Sawah, A.M. (2021). Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biology, 21, 1-21. https://doi.org/10.1186/s12870-021-02949-z
  • Silva, A.M.M., Feiler, H.P., Qi, X., de Araújo, V.L.V.P., Lacerda-Júnior, G.V., Fernandes-Júnior, P.I., & Cardoso, E.J.B.N. (2023). Impact of water shortage on soil and plant attributes in the presence of arbuscular mycorrhizal fungi from a harsh environment. Microorganisms, 11 (5), 1144. https://doi.org/10.3390/microorganisms11051144
  • Smith, S.E., & Read, D.J. (2010). Mycorrhizal symbiosis. Academic press.
  • Sun, Y., Wang, C., & Ruan, H. (2022). Increased microbial carbon and nitrogen use efficiencies under drought stress in a poplar plantation. Forest Ecology and Management, 519, 120341. https://doi.org/10.1016/j.foreco.2022.120341
  • Tarım ve Orman Bakanlığı (2023). "Tarımsal ekonomi ve politika geliştirme enstitüsü."
  • Thalman, A. (1967). Über die mikrobielle Aktivitaet und ihre Beziehungen zur Fruchtbarkeitsmerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenase aktivitaet (TTC-Reduktion) Diss. Giessen (FRG).
  • Treseder, K.K., & Lennon, J.T. (2015). Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews, 79 (2), 243-262. https://doi.org/10.1128/mmbr.00001-15
  • Ullah, N., Ditta, A., Imtiaz, M., Li, X., Jan, A.U., Mehmood, S., ... & Rizwan, M. (2021). Appraisal for organic amendments and plant growth‐promoting rhizobacteria to enhance crop productivity under drought stress: A review. Journal of Agronomy and Crop Science, 207 (5), 783-802. https://doi.org/10.1111/jac.12502
  • U.S. Salinity Laboratory Staff (1954). Diagnosis and Improvement of Saline and Alkaline Soils, USDA No: 6.
  • Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
  • Medina, A., & Azcón, R. (2010). Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. Journal of Soil Science and Plant Nutrition, 10 (3), 354-372. https://doi.org/10.3390/plants12173102
  • Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
  • Wang, R., Sun, Q., Wang, Y., Zheng, W., Yao, L., Hu, Y., & Guo, S. (2018). Contrasting responses of soil respiration and temperature sensitivity to land use types: Cropland vs. apple orchard on the Chinese Loess Plateau. Science of the Total Environment, 621, 425-433. https://doi.org/10.1016/j.scitotenv.2017.11.290
  • Wang, Z.G., Bi, Y.L., Jiang, B., Zhakypbek, Y., Peng, S.P., Liu, W.W., & Liu, H. (2016). Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China. Scientific Reports, 6 (1), 34336. https://doi.org/10.1038/srep34336
  • Wu, Q.S., Huang, Y.M., Li, Y., & He, X.H. (2014). Contribution of arbuscular mycorrhizas to glomalin-related soil protein, soil organic carbon and aggregate stability in citrus rhizosphere. International Journal of Agriculture & Biology, 16 (1).
  • Xu, C., Li, Y., Hu, X., Zang, Q., Zhuang, H., & Huang, L. (2022). The influence of organic and conventional cultivation patterns on physicochemical property, enzyme activity and microbial community characteristics of paddy soil. Agriculture, 12 (1), 121. https://doi.org/10.3390/agriculture12010121
  • Yang, H., Schroeder-Moreno, M., Giri, B., & Hu, S. (2018). Arbuscular mycorrhizal fungi and their responses to nutrient enrichment. Root Biology, 429-449. https://doi.org/10.1007/978-3-319-75910-4_17
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi
Bölüm Araştırma Makalesi
Yazarlar

Ali Sarıoğlu 0000-0001-6269-4990

Sabri Akın 0000-0002-9196-3157

Cengiz Kaya 0000-0001-8938-3463

Mehmet Şimşek 0000-0002-9552-1743

Proje Numarası 18148
Erken Görünüm Tarihi 9 Ağustos 2025
Yayımlanma Tarihi 21 Ağustos 2025
Gönderilme Tarihi 27 Aralık 2024
Kabul Tarihi 24 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 2

Kaynak Göster

APA Sarıoğlu, A., Akın, S., Kaya, C., Şimşek, M. (2025). Enhancing sugar beet yield and soil microbial activity under water-limited conditions through mycorrhizal and bacterial inoculations. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 30(2), 347-364. https://doi.org/10.37908/mkutbd.1608245

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download