Araştırma Makalesi
BibTex RIS Kaynak Göster

Micrometal sources and potential pollution status in intensive and monoculture agriculture

Yıl 2025, Cilt: 30 Sayı: 3, 866 - 885, 31.12.2025
https://doi.org/10.37908/mkutbd.1722760

Öz

In this study, the concentrations of micrometalloids (MMs) such as Fe, Mn, Cu, Zn, Ni, Cd, Co, Pb and Cr were determined in 165 soil samples collected from 0-20 cm depth by determining their locations from agricultural lands in Osmaniye province.The average concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were detected 3.30, 0.16, 103, 18.52, 0.16, 17093, 126.3, 232.61, 2.71 and 52.19 mg kg−1, respectively. The results of this study showed that Ni, Co and Cr are due to geological erosion of the parent material, Fe, Mn and Cd are due to both lithogenic and different anthropogenic sources and Pb is due to atmospheric factors. The average concentrations of Ni, Cd and Cr among MMs in the investigated agricultural soils exceeded the UCC concentrations used for the calculation of environmental and ecological risk indices. Although non-carcinogenic and carcinogenic risks do not pose a threat to the inhabitants of the region at the moment, the accumulation of MMs and the level of contamination of soils indicate that they may pose a threat in the near future. Furthermore, HQ and HI values for ingestion and dermal were found to be higher in children than in adults, indicating that children are more affected by MMs in agricultural soils. the high concentration of a MM in soils where pollution is investigated may directly depend on the parent material of the soils studied, as in this study. Therefore, in such studies, sampling should be done from the main material.

Etik Beyan

This article does not require ethical approval as there are no studies with human or animal subjects.

Kaynakça

  • Alloway, B.J. (2013). Introduction (pp. 3–9). Springer.
  • Antibachi, D., Kelepertzis, E., & Kelepertsis, A. (2012). Heavy metals in agricultural soils of the Mouriki-Thiva area (central Greece) and environmental impact implications. Soil and Sediment Contamination: An International Journal, 21 (4), 434-450.
  • Avcı, M. (2005). Diversity and endemism in Turkey’s vegetation. Coğrafya Dergisi, 13, 27-55.
  • Aytop, H. (2023). Evaluation of environmental and ecological risks caused by metals in agricultural areas: An example in the Amik Plain of South Turkey. International Journal of Environmental Health Research, 33 (12), 1418-1429. https://doi.org/10.1080/09603123.2022.2097203
  • Aytop, H., Koca, Y.K., & Şenol, S. (2023). The importance of using soil series-based geochemical background values when calculating the enrichment factor in agricultural areas. Environmental Geochemistry and Health, 45, 6215-6230. https://doi.org/10.1007/s10653-023-01640-6
  • Canadian Council of Ministers of the Environment. (2007). Canadian soil quality guidelines for the protection of environmental and human health. National Guidelines and Standards Office.
  • Chakravarty, I.M., & Patgiri, A.D. (2009). Metal pollution assessment in sediments of the Dikrong River, N.E. India. Journal of Human Ecology, 27 (1), 63-67.
  • Chandrasekaran, A., Ravisankar, H.N., Satapathy, K.K., Prasad, M.V.R., & Kanagasabapathy, K.V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India – Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589-600. https://doi.org/10.1016/j.saa.2014.08.093
  • Deliboran, A., Varol, M., & Aytop, H. (2024). Evaluation of ecological and health risks of trace elements in soils of olive orchards and apportionment of their sources using the APCS-MLR receptor model. Environmental Geochemistry and Health, 46, 320. https://doi.org/10.1007/s10653-024-02108-x
  • Du, Y., Fu, Y., & Wang, L. (2015, November). Skeleton based action recognition with convolutional neural network. In 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) (pp. 579-583). IEEE.
  • Fei, X., Xiao, R., Christakos, G., Langousis, A., Ren, Z., Tian, Y., & Lv, X. (2019). Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecological Indicators, 106. https://doi.org/10.1016/j.ecolind.2019.105508
  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8 Jackson, M.L. (1958). Soil chemical analysis. Prentice-Hall.
  • Kabata-Pendias, A. (2011). Trace elements of soils and plants (4th ed.). CRC Press.
  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G.P.S., Bali, A.S., Bhardwaj, R., Thukral, A.K., & Cerda, A. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art review. Chemosphere, 216, 449-462. https://doi.org/10.1016/j.chemosphere.2018.10.066
  • Lavkor, İ. (2006). The determination of the relationships of soil fertility–plant nutrition in the soils formed on the different parent material present in province Osmaniye and its surroundings (Master’s thesis). Çukurova University, Graduate School of Natural and Applied Sciences.
  • Lehmann, J., Bossio, D.A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1 (10), 544-553.
  • Li, P., Qian, H., Howard, K.W., & Wu, J. (2015). Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environmental Earth Sciences, 73 (7), 3403-3415.
  • Mamat, Z., Yimit, H., Jir, Z. A., et al. (2014). Source identification and hazardous risk delineation of heavy metal contamination in Yanqi Basin, northwest China. Science of the Total Environment, 493, 1098-1111. https://doi.org/10.1016/j.scitotenv.2014.03.087
  • Mazurek, R., Kowalska, J., Gąsiorek, M., Zaręba, P., Józefowska, A., Zaleski, T., Kępka, W., Tymczuk, M., & Orłowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168. https://doi.org/10.1016/j.chemosphere.2016.10.126
  • Men, C., Liu, R., Xu, L., Wang, Q., Guo, L., Miao, Y., & Shen, Z. (2020). Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. Journal of Hazardous Materials, 388, 121763. https://doi.org/10.1016/j.jhazmat.2019.121763
  • Merry, R.H., & Tiller, K.G. (1991). Distribution and budget of cadmium and lead in an agricultural region near Adelaide, South Australia. Water, Air, and Soil Pollution, 57-58, 171-180.
  • Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. GeoJournal, 2, 108-118.
  • Müller, G. (1981). Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflüsse: Eine Bestandsaufnahme. Chemiker-Zeitung, 105, 157-164.
  • MTA. (2024). Osmaniye province mine and energy resources [Bilgi sayfası]. General Directorate of Mineral Research and Exploration. https://www.mta.gov.tr/v3.0/bilgi-merkezi/il-maden-potansiyelleri
  • Oze, C., Skinner, C., Schroth, A.W., & Coleman, R.G. (2008). Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Applied Geochemistry, 23 (12), 3391-3403.
  • Pan, L.B., Ma, J., Wang, X.L., & Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere, 148, 248-254.
  • Peng, J.Y., Zhang, S., Han, Y., Bate, B., Ke, H., & Chen, Y. (2022). Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 816, 151632. https://doi.org/10.1016/j.scitotenv.2021.151632
  • Praveena, S.M., Shaifuddin, S.N.M., Sukiman, S., Nasir, F.A.M., Hanafi, Z., Kamarudin, N., Ismail, T.H., & Aris, A.Z. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Science of the Total Environment, 642, 230-240. https://doi.org/10.1016/j.scitotenv.2018.06.058
  • Rahman, S.H., Khanam, D., Adyel, T.M., Islam, M.S., Ahsan, M.A., & Akbor, M.A. (2012). Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of seasonal variation and indices. Applied Sciences, 2 (3), 584-601.
  • Rudnick, R.L., & Gao, S. (2003). Composition of the continental crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 1-64). Elsevier.
  • Sanaei, F., Amin, M.M., Alavijeh, Z.P., Esfahani, R.A., Sadeghi, M., Bandarrig, N.S., Fatehizadeh, A., Taheri, E., & Rezakazemi, M. (2020). Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index. Environmental Science and Pollution Research, 28, 1479-1490. https://doi.org/10.1007/s11356-020-10450-7
  • Shaheen, S.M., Antoniadis, V., Kwon, E., Song, H., Wang, S.L., Hseu, Z.Y., & Rinklebe, J. (2020). Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution, 262, 114312. https://doi.org/10.1016/j.envpol.2020.114312
  • Sun, X., Zhang, L., & Lv, J. (2021). Spatial assessment models to evaluate human health risk associated to soil potentially toxic elements. Environmental Pollution, 268, 115699. https://doi.org/10.1016/j.envpol.2020.115699
  • Şimşek, T., Kalkancı, N., & Büyük, G. (2021). Determination of heavy metal pollution levels in agricultural soils: The case of Osmaniye (in Turkish). Mustafa Kemal University Journal of Agricultural Sciences, 26 (1), 106-116. https://doi.org/10.37908/mkutbd.804262
  • Tepanosyan, G., Sahakyan, L., Belyaeva, O., Maghakyan, N., & Saghatelyan, A. (2017). Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere, 184, 1230-1240. https://doi.org/10.1016/j.chemosphere.2017.06.108
  • TRMGM (Turkish State Meteorological Service). (2024). Cities & Holiday Resorts Osmaniye. https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • TSPCR. (2005). Soil pollution control regulation (in Turkish). Republic of Turkey Ministry of Environment and Forestry. Official Gazette 25831. https://www.resmigazete.gov.tr/eskiler/2005/05/20050531-6.htm
  • Tudi, M., Ruan, H.D., Wei, B., Wang, L., Tong, S., Kong, C., & Yang, L.S. (2021). Ecological and health risk assessment of trace elements in surface soil in an arid region of Xinjiang, China. Journal of Soils and Sediments, 21, 936-947. https://doi.org/10.1007/s11368-020-02812-y
  • USEPA (U.S. Environmental Protection Agency). (2023a). Exposure Assessment Tools by Media—Soil and Dust. https://www.epa.gov/expobox/exposure-assessment-tools-media-soil-and-dust
  • USEPA (U.S. Environmental Protection Agency). (2023b). Regional Screening Levels (RSLs)—Equations. https://www.epa.gov/risk/regional-screening-levels-rsls-equations
  • Varol, M., Gündüz, K., & Sünbül, M.R. (2021). Pollution status, potential sources and health risk assessment of arsenic and trace metals in agricultural soils: A case study in Malatya province Turkey. Environmental Research, 202, 111806. https://doi.org/10.1016/j.envres.2021.111806
  • Varol, M., Sünbül, M.R., Aytop, H., & Yılmaz, C.H. (2020). Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. Chemosphere, 245, 125592. https://doi.org/10.1016/j.chemosphere.2019.125592
  • Wang, C.C., Zhang, Q.C., Kang, S.G., Li, M.Y., Zhang, M.Y., Xu, W.M., Xiang, P., & Ma, L.Q. (2023). Heavy metal(loid)s in agricultural soil from main grain production regions of China: Bioaccessibility and health risks to humans. Science of the Total Environment, 858. https://doi.org/10.1016/j.scitotenv.2022.159819
  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94 (2), 99-107.
  • Wu, J., Lu, J., Li, L., Min, X., & Luo, Y. (2018). Pollution, ecological-health risks, and sources of heavy metals in the soil of the northeastern Qinghai-Tibet Plateau. Chemosphere, 201, 234-242. https://doi.org/10.1016/j.chemosphere.2018.02.122
  • Xie, L., Li, P., & Mu, D. (2023). Spatial distribution, source apportionment and potential ecological risk assessment of trace metals in surface soils in the upstream region of the Guanzhong Basin, China. Environmental Research, 234. https://doi.org/10.1016/j.envres.2023.116527
  • Yılmaz, C.H. (2023). Heavy metals and their sources, potential pollution situations and health risks for residents in Adıyaman province agricultural lands, Türkiye. Environmental Geochemistry and Health, 45, 3521-3539. https://doi.org/10.1007/s10653-022-01423-5
  • Zeng, S., Ma, J., Yang, Y., Zhang, S., Liu, G.J., & Chen, F. (2019). Spatial assessment of farmland soil pollution and its potential human health risks in China. Science of the Total Environment, 687, 642-653. https://doi.org/10.1016/j.scitotenv.2019.05.291
  • Zhang, Y., Wang, S., Gao, Z., Zhang, H., Zhu, Z., Jiang, B., Liu, J., & Dong, H. (2021). Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density stable sampling. Ecotoxicology and Environmental Safety, 227. https://doi.org/10.1016/j.ecoenv.2021.112926
  • Zhang, Z., Lu, Y., Li, H., Tu, Y., Liu, B., & Yang, Z. (2018). Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Science of the Total Environment, 645, 235-243.
  • Zhu, Y.-G., Chen, S.B., & Yang, J.C. (2008). Risk assessment of heavy metal contamination in agricultural soils of a typical peri-urban area in China. Environment International, 33 (6), 785-790. https://doi.org/10.1016/j.envint.2007.02.002

Yoğun ve Monokültür Tarımda Mikrometal Kaynaklar ve Potansiyel Kirlilik Durumu

Yıl 2025, Cilt: 30 Sayı: 3, 866 - 885, 31.12.2025
https://doi.org/10.37908/mkutbd.1722760

Öz

Bu çalışmada, Osmaniye ilindeki tarım arazilerinden konumları belirlenerek 0-20 cm derinlikten toplanan 165 toprak örneğinde Fe, Mn, Cu, Zn, Ni, Cd, Co, Pb ve Cr gibi mikrometaloidlerin (MMs) konsantrasyonları belirlenmiştir. Ortalama Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb ve Zn konsantrasyonları sırasıyla 3.30, 0.16, 103, 18.52, 0.16, 17093, 126.3, 232.61, 2.71 ve 52.19 mg kg-1 olarak tespit edilmiştir. Bu çalışmanın sonuçları Ni, Co ve Cr'nin ana materyalin jeolojik erozyonundan, Fe, Mn ve Cd’un hem litojenik hem de farklı antropojenik kaynaklardan, Pb'nin ise atmosferik faktörlerden kaynaklandığını göstermiştir. İncelenen tarım topraklarındaki MM'ler arasında Ni, Cd ve Cr'nin ortalama konsantrasyonları, çevresel ve ekolojik risk endekslerinin hesaplanmasında kullanılan UCC konsantrasyonlarını aşmıştır. Kanserojen olmayan ve kanserojen riskler şu anda bölge sakinleri için bir tehdit oluşturmasa da, MM'lerin birikimi ve toprakların kirlenme seviyesi yakın gelecekte bir tehdit oluşturabileceklerini göstermektedir. Ayrıca, yutma ve dermal için HQ ve HI değerleri çocuklarda yetişkinlere göre daha yüksek bulunmuştur, bu da çocukların tarım topraklarındaki MM’lerden daha fazla etkilendiğini göstermektedir. Kirliliğin araştırıldığı topraklarda bir MM'nin yüksek konsantrasyonu, bu çalışmada olduğu gibi, doğrudan çalışılan toprakların ana materyaline bağlı olabilir. Bu nedenle bu tür çalışmalarda ana materyalden örnekleme yapılmalıdır.

Kaynakça

  • Alloway, B.J. (2013). Introduction (pp. 3–9). Springer.
  • Antibachi, D., Kelepertzis, E., & Kelepertsis, A. (2012). Heavy metals in agricultural soils of the Mouriki-Thiva area (central Greece) and environmental impact implications. Soil and Sediment Contamination: An International Journal, 21 (4), 434-450.
  • Avcı, M. (2005). Diversity and endemism in Turkey’s vegetation. Coğrafya Dergisi, 13, 27-55.
  • Aytop, H. (2023). Evaluation of environmental and ecological risks caused by metals in agricultural areas: An example in the Amik Plain of South Turkey. International Journal of Environmental Health Research, 33 (12), 1418-1429. https://doi.org/10.1080/09603123.2022.2097203
  • Aytop, H., Koca, Y.K., & Şenol, S. (2023). The importance of using soil series-based geochemical background values when calculating the enrichment factor in agricultural areas. Environmental Geochemistry and Health, 45, 6215-6230. https://doi.org/10.1007/s10653-023-01640-6
  • Canadian Council of Ministers of the Environment. (2007). Canadian soil quality guidelines for the protection of environmental and human health. National Guidelines and Standards Office.
  • Chakravarty, I.M., & Patgiri, A.D. (2009). Metal pollution assessment in sediments of the Dikrong River, N.E. India. Journal of Human Ecology, 27 (1), 63-67.
  • Chandrasekaran, A., Ravisankar, H.N., Satapathy, K.K., Prasad, M.V.R., & Kanagasabapathy, K.V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India – Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589-600. https://doi.org/10.1016/j.saa.2014.08.093
  • Deliboran, A., Varol, M., & Aytop, H. (2024). Evaluation of ecological and health risks of trace elements in soils of olive orchards and apportionment of their sources using the APCS-MLR receptor model. Environmental Geochemistry and Health, 46, 320. https://doi.org/10.1007/s10653-024-02108-x
  • Du, Y., Fu, Y., & Wang, L. (2015, November). Skeleton based action recognition with convolutional neural network. In 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) (pp. 579-583). IEEE.
  • Fei, X., Xiao, R., Christakos, G., Langousis, A., Ren, Z., Tian, Y., & Lv, X. (2019). Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecological Indicators, 106. https://doi.org/10.1016/j.ecolind.2019.105508
  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8 Jackson, M.L. (1958). Soil chemical analysis. Prentice-Hall.
  • Kabata-Pendias, A. (2011). Trace elements of soils and plants (4th ed.). CRC Press.
  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G.P.S., Bali, A.S., Bhardwaj, R., Thukral, A.K., & Cerda, A. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art review. Chemosphere, 216, 449-462. https://doi.org/10.1016/j.chemosphere.2018.10.066
  • Lavkor, İ. (2006). The determination of the relationships of soil fertility–plant nutrition in the soils formed on the different parent material present in province Osmaniye and its surroundings (Master’s thesis). Çukurova University, Graduate School of Natural and Applied Sciences.
  • Lehmann, J., Bossio, D.A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1 (10), 544-553.
  • Li, P., Qian, H., Howard, K.W., & Wu, J. (2015). Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environmental Earth Sciences, 73 (7), 3403-3415.
  • Mamat, Z., Yimit, H., Jir, Z. A., et al. (2014). Source identification and hazardous risk delineation of heavy metal contamination in Yanqi Basin, northwest China. Science of the Total Environment, 493, 1098-1111. https://doi.org/10.1016/j.scitotenv.2014.03.087
  • Mazurek, R., Kowalska, J., Gąsiorek, M., Zaręba, P., Józefowska, A., Zaleski, T., Kępka, W., Tymczuk, M., & Orłowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168. https://doi.org/10.1016/j.chemosphere.2016.10.126
  • Men, C., Liu, R., Xu, L., Wang, Q., Guo, L., Miao, Y., & Shen, Z. (2020). Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. Journal of Hazardous Materials, 388, 121763. https://doi.org/10.1016/j.jhazmat.2019.121763
  • Merry, R.H., & Tiller, K.G. (1991). Distribution and budget of cadmium and lead in an agricultural region near Adelaide, South Australia. Water, Air, and Soil Pollution, 57-58, 171-180.
  • Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. GeoJournal, 2, 108-118.
  • Müller, G. (1981). Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflüsse: Eine Bestandsaufnahme. Chemiker-Zeitung, 105, 157-164.
  • MTA. (2024). Osmaniye province mine and energy resources [Bilgi sayfası]. General Directorate of Mineral Research and Exploration. https://www.mta.gov.tr/v3.0/bilgi-merkezi/il-maden-potansiyelleri
  • Oze, C., Skinner, C., Schroth, A.W., & Coleman, R.G. (2008). Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Applied Geochemistry, 23 (12), 3391-3403.
  • Pan, L.B., Ma, J., Wang, X.L., & Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere, 148, 248-254.
  • Peng, J.Y., Zhang, S., Han, Y., Bate, B., Ke, H., & Chen, Y. (2022). Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 816, 151632. https://doi.org/10.1016/j.scitotenv.2021.151632
  • Praveena, S.M., Shaifuddin, S.N.M., Sukiman, S., Nasir, F.A.M., Hanafi, Z., Kamarudin, N., Ismail, T.H., & Aris, A.Z. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Science of the Total Environment, 642, 230-240. https://doi.org/10.1016/j.scitotenv.2018.06.058
  • Rahman, S.H., Khanam, D., Adyel, T.M., Islam, M.S., Ahsan, M.A., & Akbor, M.A. (2012). Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of seasonal variation and indices. Applied Sciences, 2 (3), 584-601.
  • Rudnick, R.L., & Gao, S. (2003). Composition of the continental crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 1-64). Elsevier.
  • Sanaei, F., Amin, M.M., Alavijeh, Z.P., Esfahani, R.A., Sadeghi, M., Bandarrig, N.S., Fatehizadeh, A., Taheri, E., & Rezakazemi, M. (2020). Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index. Environmental Science and Pollution Research, 28, 1479-1490. https://doi.org/10.1007/s11356-020-10450-7
  • Shaheen, S.M., Antoniadis, V., Kwon, E., Song, H., Wang, S.L., Hseu, Z.Y., & Rinklebe, J. (2020). Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution, 262, 114312. https://doi.org/10.1016/j.envpol.2020.114312
  • Sun, X., Zhang, L., & Lv, J. (2021). Spatial assessment models to evaluate human health risk associated to soil potentially toxic elements. Environmental Pollution, 268, 115699. https://doi.org/10.1016/j.envpol.2020.115699
  • Şimşek, T., Kalkancı, N., & Büyük, G. (2021). Determination of heavy metal pollution levels in agricultural soils: The case of Osmaniye (in Turkish). Mustafa Kemal University Journal of Agricultural Sciences, 26 (1), 106-116. https://doi.org/10.37908/mkutbd.804262
  • Tepanosyan, G., Sahakyan, L., Belyaeva, O., Maghakyan, N., & Saghatelyan, A. (2017). Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere, 184, 1230-1240. https://doi.org/10.1016/j.chemosphere.2017.06.108
  • TRMGM (Turkish State Meteorological Service). (2024). Cities & Holiday Resorts Osmaniye. https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • TSPCR. (2005). Soil pollution control regulation (in Turkish). Republic of Turkey Ministry of Environment and Forestry. Official Gazette 25831. https://www.resmigazete.gov.tr/eskiler/2005/05/20050531-6.htm
  • Tudi, M., Ruan, H.D., Wei, B., Wang, L., Tong, S., Kong, C., & Yang, L.S. (2021). Ecological and health risk assessment of trace elements in surface soil in an arid region of Xinjiang, China. Journal of Soils and Sediments, 21, 936-947. https://doi.org/10.1007/s11368-020-02812-y
  • USEPA (U.S. Environmental Protection Agency). (2023a). Exposure Assessment Tools by Media—Soil and Dust. https://www.epa.gov/expobox/exposure-assessment-tools-media-soil-and-dust
  • USEPA (U.S. Environmental Protection Agency). (2023b). Regional Screening Levels (RSLs)—Equations. https://www.epa.gov/risk/regional-screening-levels-rsls-equations
  • Varol, M., Gündüz, K., & Sünbül, M.R. (2021). Pollution status, potential sources and health risk assessment of arsenic and trace metals in agricultural soils: A case study in Malatya province Turkey. Environmental Research, 202, 111806. https://doi.org/10.1016/j.envres.2021.111806
  • Varol, M., Sünbül, M.R., Aytop, H., & Yılmaz, C.H. (2020). Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain, Turkey. Chemosphere, 245, 125592. https://doi.org/10.1016/j.chemosphere.2019.125592
  • Wang, C.C., Zhang, Q.C., Kang, S.G., Li, M.Y., Zhang, M.Y., Xu, W.M., Xiang, P., & Ma, L.Q. (2023). Heavy metal(loid)s in agricultural soil from main grain production regions of China: Bioaccessibility and health risks to humans. Science of the Total Environment, 858. https://doi.org/10.1016/j.scitotenv.2022.159819
  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94 (2), 99-107.
  • Wu, J., Lu, J., Li, L., Min, X., & Luo, Y. (2018). Pollution, ecological-health risks, and sources of heavy metals in the soil of the northeastern Qinghai-Tibet Plateau. Chemosphere, 201, 234-242. https://doi.org/10.1016/j.chemosphere.2018.02.122
  • Xie, L., Li, P., & Mu, D. (2023). Spatial distribution, source apportionment and potential ecological risk assessment of trace metals in surface soils in the upstream region of the Guanzhong Basin, China. Environmental Research, 234. https://doi.org/10.1016/j.envres.2023.116527
  • Yılmaz, C.H. (2023). Heavy metals and their sources, potential pollution situations and health risks for residents in Adıyaman province agricultural lands, Türkiye. Environmental Geochemistry and Health, 45, 3521-3539. https://doi.org/10.1007/s10653-022-01423-5
  • Zeng, S., Ma, J., Yang, Y., Zhang, S., Liu, G.J., & Chen, F. (2019). Spatial assessment of farmland soil pollution and its potential human health risks in China. Science of the Total Environment, 687, 642-653. https://doi.org/10.1016/j.scitotenv.2019.05.291
  • Zhang, Y., Wang, S., Gao, Z., Zhang, H., Zhu, Z., Jiang, B., Liu, J., & Dong, H. (2021). Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density stable sampling. Ecotoxicology and Environmental Safety, 227. https://doi.org/10.1016/j.ecoenv.2021.112926
  • Zhang, Z., Lu, Y., Li, H., Tu, Y., Liu, B., & Yang, Z. (2018). Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Science of the Total Environment, 645, 235-243.
  • Zhu, Y.-G., Chen, S.B., & Yang, J.C. (2008). Risk assessment of heavy metal contamination in agricultural soils of a typical peri-urban area in China. Environment International, 33 (6), 785-790. https://doi.org/10.1016/j.envint.2007.02.002
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimleri ve Bitki Besleme (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Şimşek 0000-0002-9383-7621

Nilgün Kalkancı 0000-0002-0509-3168

Dr. Cafer Hakan Yılmaz 0000-0003-3680-453X

Gökhan Büyük 0000-0002-0522-3188

Gönderilme Tarihi 19 Haziran 2025
Kabul Tarihi 16 Eylül 2025
Erken Görünüm Tarihi 3 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Şimşek, T., Kalkancı, N., Yılmaz, D. C. H., Büyük, G. (2025). Micrometal sources and potential pollution status in intensive and monoculture agriculture. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 30(3), 866-885. https://doi.org/10.37908/mkutbd.1722760

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download