Antakya Altınçay Deresinin HEC-RAS yazılımı ile taşkın analizi
Yıl 2024,
Cilt: 29 Sayı: 3, 912 - 924, 18.12.2024
Ahmet İrvem
,
İlker Dağ
,
Mustafa Özbuldu
Öz
Taşkın, dünyanın en önemli afetlerinden biridir. Ülkemizde yaygın olarak görülen taşkınlar, doğal afetlerin neden olduğu can ve mal kaybı açısından depremden sonra ikinci, iklimsel afetler arasında ise birinci sırada yer almaktadır. Antakya ilçesi, eğimi ve akış katsayısı yüksek akarsuların olduğu bir konumdadır. Antakya şehir merkezinden geçerek Asi Nehri’ne dökülen Altınçay Deresi bu akarsulardan biridir ve meydana gelen taşkınlar nedeniyle taşkın etütlerinin yapılması ve taşkından korunmak için gerekli önlemlerin alınması gerekmektedir. Bu çalışmada, Antakya'daki yerleşim alanlarından geçen Altınçay Deresi'nin 2, 5, 10, 25, 50 ve 100 yıllık dönüş periyotlarına ait pik debileri SCS ve DSİ sentetik yöntemleri ile belirlenmiştir. Bu tahmini pik taşkın debileri HEC-RAS yazılımında kullanılarak benzetimi yapılmış ve Altınçay Deresi güzergahı boyunca seçilen akarsu kesitlerinden su profili derinliği ve taşkın risk alanları kesit konumlarına göre belirlenmiştir. Sonuç olarak, 2, 5 ve 10 yıllık dönüş periyotlarına sahip pik debilerde taşkın riski gözlenmemiş, ancak 25, 50 ve 100 yıllık dönüş periyotlarına sahip pik debilerde sırasıyla 16, 51 ve 73 farklı istasyonda taşkın olayları gözlenmiştir. Taşkın zararını azaltmak için taşkın riski taşıyan kesit alanlarının artırılması önerilmiştir.
Kaynakça
- Akgül, M.A., & Çetin, M. (2016). Tarımsal drenaj havzalarında taşkın debilerinin SWAT modeli ile tahmini. 4. Ulusal Taşkın Sempozyumu, November 23-25, Rize, Türkiye. pp 303-312.
- Demir, V., & Ülke Keskin, A. (2022). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği). Geomatik, 7 (2), 149-162
- Ardıçlıoğlu, M. (2007). Açık Kanal Akımları ve HEC-RAS Uygulamaları (E-book). Retrieved from https://www.mehmetardiclioglu.com by April 12, 2019.
- Arnell, N.W., & Gosling, S.N. (2014). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134 (3), 387-401. https://doi.org/10.1007/s10584-014-1084-5
- Blöschl, G., Kiss, A., Viglione, A., Vallvé, M.B., Böhm, O., Brázdil, R., & Wetter, O. (2020). Current European flood-rich period exceptional compared with past 500 years. Nature, 583 (7817), 560-566.
https://doi.org/10.1038/s41586-020-2478-3
- Bozdoğan, M., & Canpolat, E. (2024). Delibekirli Havzası’nın Taşkın Tekerrürünün Hesaplanması ve HEC-RAS ile Modellenmesi (Kırıkhan/Hatay). Artvin Çoruh University, Natural Hazards Application and Research Center, Journal of Natural Hazards and Environment, 10 (2), 478-503, https://doi.org/10.21324/dacd.1387971
- Cai, S., Fan, J., & Yang, W. (2021). Flooding risk assessment and analysis based on GIS and the TFN-AHP method: A case study of Chongqing, China. Atmosphere, 12 (5), 623. https://doi.org/10.3390/atmos12050623
- Chen, H., Xu, Z., Liu, Y., Huang, Y., & Yang, F. (2022). Urban flood risk assessment based on dynamic population distribution and fuzzy comprehensive evaluation. International Journal of Environmental Research and Public Health, 19 (24), 16406. https://doi.org/10.3390/ijerph192416406
- Chin, D.A. (2006). Water resources engineering (2nd ed.). Pearson Prentice Hall, New Jersey, USA. pp 976.
- Dong, S., Yu, T., Farahmand, H., & Mostafavi, A. (2022). Predictive multi-watershed flood monitoring using deep learning on integrated physical and social sensors data. Environment and Planning B: Urban Analytics and City Science, 49 (7), 1838-1856. https://doi.org/10.1177/23998083211069140
- HEC-RAS (2010). River Analysis System, Applications Guide, Version 4.1., U.S Army Corps of Engineers, Hydrologic Engineering Center. Retrieved from www.hec.usace.army.mil by April 12, 2019.
- Irvem, A., & Ozbuldu, M. (2020). Evaluation of flood simulation for Zeyzoun Dam-break in Syria using HEC-RAS model. Fresenius Environmental Bulletin, 29, 1250-1255.
- Keskinkılıç, M.A. (2015). Hatay İli Yüzey Akış Potansiyelinin CBS İle Belirlenmesi. Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Biyosistem Mühendisliği Anabilim Dalı, 55 s., Hatay.
- Koç, G., Petrow, T., & Thieken, A.H. (2020). Analysis of the most severe flood events in Turkey (1960–2014): Which triggering mechanisms and aggravating pathways can be identified? Water, 12 (6), 1562. https://doi.org/10.3390/w12061562
- Luu, C., & Meding, J.V. (2018). A flood risk assessment of Quang Nam, Vietnam using spatial multicriteria decision analysis. Water, 10 (4), 461. https://doi.org/10.3390/w10040461
- Luu, C., Tran, H.X., Pham, B.T., Al‐Ansari, N., Tran, T.Q., Duong, N.Q., & Meding, J.V. (2020). Framework of spatial flood risk assessment for a case study in Quang Binh province, Vietnam. Sustainability, 12 (7), 3058. https://doi.org/10.3390/su12073058
- Manina, M., Halaj, P., Jurík, L., & Kaletová, T. (2020). Modelling seasonal changes of longitudinal dispersion in the Okna river. Acta Scientiarum Polonorum Formatio Circumiectus, 19 (1), 37-46. https://doi.org/10.15576/asp.fc/2020.19.1.37
- Milišić, H., & Hadžić, E. (2023). Estimation of channel and flood plain roughness using Hec-Ras model: A case study of the Veseočica river, Bosnia and Herzegovina. IOP Conference Series: Materials Science and Engineering, 1298 (1), 012031. https://doi.org/10.1088/1757-899x/1298/1/012031
- Oğraş, S., & Önen, F. (2020). Flood analysis with hec-ras: a case study of Tigris River. Advances in Civil Engineering, 1-13. https://doi.org/10.1155/2020/6131982
- Olanrewaju, C. C., & Reddy, M. (2022). Assessment and prediction of flood hazards using standardized precipitation index—a case study of Ethekwini metropolitan area. Journal of Flood Risk Management, 15 (2). https://doi.org/10.1111/jfr3.12788
- Patel, C., & Gundaliya, P.J. (2016). Floodplain delineation using hecras model—a case study of Surat City. Open Journal of Modern Hydrology, 06(01), 34-42. https://doi.org/10.4236/ojmh.2016.61004
- Razi, M.A.M., Deli, M.Z., Yusoff, M.A.M., Ahmad, M.A., & Adnan, M.S. (2022). Flood modelling studies using river analysis system (Hec-Ras) for flood plain area in Muar City. International Journal of Integrated Engineering, 14 (9). https://doi.org/10.30880/ijie.2022.14.09.006
- Saber, M., & Yılmaz, K.K. (2018). Evaluation and bias correction of satellite-based rainfall estimates for modelling flash floods over the Mediterranean region: application to Karpuz River Basin, Turkey. Water, 10 (5), 657. https://doi.org/10.3390/w10050657
- Sarhadi, A., Soltani, S., & Modarres, R. (2012). Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458-459. https://doi.org/10.1016/j.jhydrol.2012.06.039
- Song, H., Xu, X., Gao, J., Kettner, A.J., Shi, Y., Xue, C., & Gao, S. (2020). Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years. Hydrology and Earth System Sciences, 24 (10), 4743-4761. https://doi.org/10.5194/hess-24-4743-2020
- Tülücü, K. (2002). Hidroloji. Ç.Ü. Ziraat Fakültesi Genel Yayın No:139, Adana, 352 s.
- Wang, G., Liu, Y., Hu, Z., Lyu, Y., Zhang, G., Liu, J., & Liu, L. (2020). Flood risk assessment based on fuzzy synthetic evaluation method in the Beijing-Tianjin-Hebei metropolitan area, China. Sustainability, 12 (4), 1451. https://doi.org/10.3390/su12041451
- Woldegebrael, S.M., Kidanewold, B.B., & Melesse, A.M. (2022). Development and evaluation of a web-based and interactive flood management tool for awash and Omo-Gibe Basins, Ethiopia. Water, 14 (14), 2195. https://doi.org/10.3390/w14142195
- Yi, B., Chen, L., Zhang, H., Singh, V.P., Jiang, P., Liu, Y., & Qiu, H. (2022). A time-varying distributed unit hydrograph method considering soil moisture. Hydrology and Earth System Sciences, 26 (20), 5269-5289. https://doi.org/10.5194/hess-26-5269-2022
Flood analysis using the HEC-RAS software for Antakya Altınçay Creek
Yıl 2024,
Cilt: 29 Sayı: 3, 912 - 924, 18.12.2024
Ahmet İrvem
,
İlker Dağ
,
Mustafa Özbuldu
Öz
Flood is one of the most important disasters in the world. Floods, common in our country, are the second disaster after the earthquake in terms of loss of life and property caused by natural disasters and the first among climatic disasters. The district of Antakya is located where streamflow has a high flow coefficient. Because of flooding in Altınçay Creek which flows through the center of Antakya into the Orontes River, flood studies need to be carried out and the necessary precautions taken to prevent flooding. In this study, peak discharges for 2, 5, 10, 25, 50, and 100-year return periods of Altınçay Creek passing through residential areas in Antakya were determined by SCS and DSI synthetic methods. Using these estimated peak discharges the water profile along the Altınçay Creek route has been simulated using HEC-RAS software, and the flood risk areas were determined on cross-sections basis. As a result, flood risk was not observed in peak discharge for return periods of 2, 5 and 10 years. However, flood events were observed at 16, 51, and 73 different cross sections in peak discharges for return periods of 25, 50, and 100 years respectively. To reduce flood damage, it was suggested that the cross-sectional areas having flood risk must be increased.
Etik Beyan
Ethical approval is not required as there are no studies with human or animal subjects in this article.
Destekleyen Kurum
The Scientific Research Project Office (BAP) of Hatay Mustafa Kemal University
Teşekkür
The authors thank the Scientific Research Project Office (BAP) of Hatay Mustafa Kemal University for their financial support for the study (Project No: 18YL061). This paper was produced from the MS thesis of İlker DAĞ.
Kaynakça
- Akgül, M.A., & Çetin, M. (2016). Tarımsal drenaj havzalarında taşkın debilerinin SWAT modeli ile tahmini. 4. Ulusal Taşkın Sempozyumu, November 23-25, Rize, Türkiye. pp 303-312.
- Demir, V., & Ülke Keskin, A. (2022). Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği). Geomatik, 7 (2), 149-162
- Ardıçlıoğlu, M. (2007). Açık Kanal Akımları ve HEC-RAS Uygulamaları (E-book). Retrieved from https://www.mehmetardiclioglu.com by April 12, 2019.
- Arnell, N.W., & Gosling, S.N. (2014). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134 (3), 387-401. https://doi.org/10.1007/s10584-014-1084-5
- Blöschl, G., Kiss, A., Viglione, A., Vallvé, M.B., Böhm, O., Brázdil, R., & Wetter, O. (2020). Current European flood-rich period exceptional compared with past 500 years. Nature, 583 (7817), 560-566.
https://doi.org/10.1038/s41586-020-2478-3
- Bozdoğan, M., & Canpolat, E. (2024). Delibekirli Havzası’nın Taşkın Tekerrürünün Hesaplanması ve HEC-RAS ile Modellenmesi (Kırıkhan/Hatay). Artvin Çoruh University, Natural Hazards Application and Research Center, Journal of Natural Hazards and Environment, 10 (2), 478-503, https://doi.org/10.21324/dacd.1387971
- Cai, S., Fan, J., & Yang, W. (2021). Flooding risk assessment and analysis based on GIS and the TFN-AHP method: A case study of Chongqing, China. Atmosphere, 12 (5), 623. https://doi.org/10.3390/atmos12050623
- Chen, H., Xu, Z., Liu, Y., Huang, Y., & Yang, F. (2022). Urban flood risk assessment based on dynamic population distribution and fuzzy comprehensive evaluation. International Journal of Environmental Research and Public Health, 19 (24), 16406. https://doi.org/10.3390/ijerph192416406
- Chin, D.A. (2006). Water resources engineering (2nd ed.). Pearson Prentice Hall, New Jersey, USA. pp 976.
- Dong, S., Yu, T., Farahmand, H., & Mostafavi, A. (2022). Predictive multi-watershed flood monitoring using deep learning on integrated physical and social sensors data. Environment and Planning B: Urban Analytics and City Science, 49 (7), 1838-1856. https://doi.org/10.1177/23998083211069140
- HEC-RAS (2010). River Analysis System, Applications Guide, Version 4.1., U.S Army Corps of Engineers, Hydrologic Engineering Center. Retrieved from www.hec.usace.army.mil by April 12, 2019.
- Irvem, A., & Ozbuldu, M. (2020). Evaluation of flood simulation for Zeyzoun Dam-break in Syria using HEC-RAS model. Fresenius Environmental Bulletin, 29, 1250-1255.
- Keskinkılıç, M.A. (2015). Hatay İli Yüzey Akış Potansiyelinin CBS İle Belirlenmesi. Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Biyosistem Mühendisliği Anabilim Dalı, 55 s., Hatay.
- Koç, G., Petrow, T., & Thieken, A.H. (2020). Analysis of the most severe flood events in Turkey (1960–2014): Which triggering mechanisms and aggravating pathways can be identified? Water, 12 (6), 1562. https://doi.org/10.3390/w12061562
- Luu, C., & Meding, J.V. (2018). A flood risk assessment of Quang Nam, Vietnam using spatial multicriteria decision analysis. Water, 10 (4), 461. https://doi.org/10.3390/w10040461
- Luu, C., Tran, H.X., Pham, B.T., Al‐Ansari, N., Tran, T.Q., Duong, N.Q., & Meding, J.V. (2020). Framework of spatial flood risk assessment for a case study in Quang Binh province, Vietnam. Sustainability, 12 (7), 3058. https://doi.org/10.3390/su12073058
- Manina, M., Halaj, P., Jurík, L., & Kaletová, T. (2020). Modelling seasonal changes of longitudinal dispersion in the Okna river. Acta Scientiarum Polonorum Formatio Circumiectus, 19 (1), 37-46. https://doi.org/10.15576/asp.fc/2020.19.1.37
- Milišić, H., & Hadžić, E. (2023). Estimation of channel and flood plain roughness using Hec-Ras model: A case study of the Veseočica river, Bosnia and Herzegovina. IOP Conference Series: Materials Science and Engineering, 1298 (1), 012031. https://doi.org/10.1088/1757-899x/1298/1/012031
- Oğraş, S., & Önen, F. (2020). Flood analysis with hec-ras: a case study of Tigris River. Advances in Civil Engineering, 1-13. https://doi.org/10.1155/2020/6131982
- Olanrewaju, C. C., & Reddy, M. (2022). Assessment and prediction of flood hazards using standardized precipitation index—a case study of Ethekwini metropolitan area. Journal of Flood Risk Management, 15 (2). https://doi.org/10.1111/jfr3.12788
- Patel, C., & Gundaliya, P.J. (2016). Floodplain delineation using hecras model—a case study of Surat City. Open Journal of Modern Hydrology, 06(01), 34-42. https://doi.org/10.4236/ojmh.2016.61004
- Razi, M.A.M., Deli, M.Z., Yusoff, M.A.M., Ahmad, M.A., & Adnan, M.S. (2022). Flood modelling studies using river analysis system (Hec-Ras) for flood plain area in Muar City. International Journal of Integrated Engineering, 14 (9). https://doi.org/10.30880/ijie.2022.14.09.006
- Saber, M., & Yılmaz, K.K. (2018). Evaluation and bias correction of satellite-based rainfall estimates for modelling flash floods over the Mediterranean region: application to Karpuz River Basin, Turkey. Water, 10 (5), 657. https://doi.org/10.3390/w10050657
- Sarhadi, A., Soltani, S., & Modarres, R. (2012). Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458-459. https://doi.org/10.1016/j.jhydrol.2012.06.039
- Song, H., Xu, X., Gao, J., Kettner, A.J., Shi, Y., Xue, C., & Gao, S. (2020). Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years. Hydrology and Earth System Sciences, 24 (10), 4743-4761. https://doi.org/10.5194/hess-24-4743-2020
- Tülücü, K. (2002). Hidroloji. Ç.Ü. Ziraat Fakültesi Genel Yayın No:139, Adana, 352 s.
- Wang, G., Liu, Y., Hu, Z., Lyu, Y., Zhang, G., Liu, J., & Liu, L. (2020). Flood risk assessment based on fuzzy synthetic evaluation method in the Beijing-Tianjin-Hebei metropolitan area, China. Sustainability, 12 (4), 1451. https://doi.org/10.3390/su12041451
- Woldegebrael, S.M., Kidanewold, B.B., & Melesse, A.M. (2022). Development and evaluation of a web-based and interactive flood management tool for awash and Omo-Gibe Basins, Ethiopia. Water, 14 (14), 2195. https://doi.org/10.3390/w14142195
- Yi, B., Chen, L., Zhang, H., Singh, V.P., Jiang, P., Liu, Y., & Qiu, H. (2022). A time-varying distributed unit hydrograph method considering soil moisture. Hydrology and Earth System Sciences, 26 (20), 5269-5289. https://doi.org/10.5194/hess-26-5269-2022