Araştırma Makalesi
BibTex RIS Kaynak Göster

Sol meme radyoterapisinde brakial pleksus, karotis arter ve tiroid dozlarının değerlendirilmesi

Yıl 2022, Cilt: 13 Sayı: 46, 174 - 181, 01.08.2022
https://doi.org/10.17944/mkutfd.1002684

Öz

Amaç: Meme kanserinde radyoterapi (RT) uygulaması hastalığın kontrolünde ve sağkalımında önemli bir yere sahiptir. Genel sağkalım sürelerinin artmasına bağlı olarak meme kanseri tedavisinde görülen yan etkilerin önemi artmıştır. Bu çalışmada RT uygulanan meme kanseri olgularda, brakial pleksus, karotis arter ve tiroid dozlarının değerlendirilmesi amaçlandı.
Yöntem: Çalışmamızda radikal mastektomi yapılmış 15 sol meme kanseri hastaya, alan içinde alan (Field in Field (FinF)), statik yoğunluk ayarlı radyoterapi (S-YART) ve dinamik yoğunluk ayarlı radyoterapi (D-YART) teknikleri ile üç farklı radyoterapi planları hazırlandı. Planlar planlanan hedef hacim (Planned Target Volume-(PTV)) dozları, konformite indeksi (CI) ve homojenite indeksi (HI) açısından değerlendirildi. Kritik organlar olarak brakial pleksus, sol karotis arter ve tiroid dozları karşılaştırıldı.
Bulgular: PTV’ nin aldığı ortalama dozlar üç teknik içinde benzer bulundu. Tiroidin Dort, V20, V30 (Gy) doz değerleri S-YART tekniğinde, FinF ve D-YART tekniklerine göre anlamlı olarak azaldı (p<0.05). Tiroidin V45 (Gy) değeri ise D-YART ve S-YART tekniklerinde anlamlı olarak azaldığı görüldü (p değerleri sırasıyla 0.006, 0.005). Brakial pleksus Dort (Gy) ve V45 (Gy) değerleri D-YART ve S-YART tekniklerinde FinF tekniğine göre anlamlı olarak daha düşük bulundu (p<0.05). Sol karotis arter Dort değeri S-YART tekniğinde anlamlı olarak azaldı (p=0.012).
Sonuç: Radikal mastektomi uygulanmış sol memeye yönelik radyoterapi tedavisinde brakial pleksus, sol karotis arter ve tiroid dozlarının S-YART ve D-YART tekniklerinde daha iyi korunduğu bulundu. Hastalara tedavi planı seçimlerinde bu kritik yapıların aldığı dozlara bakılarak kişiye uygun planlama tercih edilmelidir.

Kaynakça

  • Ma J, Jemal A. Breast Cancer Statistics. In: Ahmad A. editor. Breast cancer metastasis and drug resistance progress and prospects. New York: Springer, 2013. 1-18. https://doi.org/10.1007/978-1-4614-5647-6.
  • Ferlay J, Héry C, Autier P. Sankaranarayanan R. Global burden of breast cancer. In: Li C, ed. Breast Cancer Epidemiology. New York, NY: Springer Inc, 2010. 1–19. https://doi.org/10.1007/978-1-4419-0685-4_1
  • Aras S, İkizceli T, Meryem A. Dosimetric Comparison of Three-Dimensional Conformal Radiotherapy (3D-CRT) and Intensity Modulated Radiotherapy Techniques (IMRT) with Radiotherapy Dose Simulations for Left-Sided Mastectomy Patients. Eur J Breast Health, 2019. 15(2): p 85-89. https://doi.org/ 10.5152/ejbh.2019.4619.
  • Steene J.V, Soete G, Storme G. Adjuvant radiotherapy for breast cancer significantly improves overall survival: the missing link. Radiotherapy and Oncology, 2000. 55(3): p. 263–272. https://doi.org/10.1016/s0167-8140(00)00204-8.
  • Onitilo AA, Engel JM, Stankowski RV, Doi SA. Survival comparisons for breast conserving surgery and mastectomy revisited: community experience and the role of radiation therapy. Clinical Medicine & Research, 2015. 13(2): p. 65–73. https://doi.org/10.3121/cmr.2014.1245.
  • Pignol J, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity‐modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol, 2008. 26813): p. 2085–2092. https://doi.org/10.1200/JCO.2007.15.2488.
  • Yusoff S, Chia D, Tang J. et al. Bilateral breast and regional nodal irradiation in early stage breast cancer a dosimetric comparison of IMRT and 3D conformal radiation therapy. Int J Radiat Oncol Biol Phys, 2012. 84(3):s223. https:.
  • Wang J. et al. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study. Med Dosim, 2014, 40(3), 190- 194. https://doi.org/10.1016/j.meddos.2014.11.004.
  • Ma C, Zhang W, Lu J. et al. Dosimetric comparison and evaluation of three radiotherapy techniques for use after modified radical mastectomy for locally advanced left-sided breast cancer. Scientific Reports, 2015, 21(5);12274. https://doi.org/10.1038/srep12274.
  • ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). J ICRU, 1999 32:1.
  • http://www. rtog.org/CoreLab/ContouringAtlases/BreastCencerAtlas. Aspx.
  • Gee H.E, Moses L, Stuart K, Nahar N, Tiver K, Wang T, Ward R, Ahern V. Contouring consensus guidelines in breast cancer radiotherapy: Comparison and systematic review of patterns of failure. J Med Imaging Radiat Oncol, 2019. 63(1), 102-115. https://doi.org/10.1111/1754-9485.12804.
  • Truong MT, Nadgir RN, Hirsch AE, Subramaniam RM, Wang JW, Wu R, Khandekar M, Nawaz AO, Sakai O. Brachial plexus contouring with CT and MR imaging in radiation therapy planning for head and neck cancer. Radiographics, 2010. 30(4): p. 1095-103. https://doi.org/10.1148/rg.304095105.
  • ICRU Report 83 Prescribing, recording, and Reporting Photon Beam İntensity Modulated Radiation Therapy (IMRT). J ICRU, 2010. 10:1 106.
  • ICRU Report 50 Prescribing, recording and reporting photon beam therapy. International Commission on Radiation Units and Measurements. 1993 p. 72.
  • Li X.A, Tai A, Arthur DW et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys, 2009. 73(3): p. 944-51. https://doi.org/10.1016/j.ijrobp.2008.10.034.
  • Hancock SL, McDougall IR, Constine LS. Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys, 1995. 31(5): p. 1165-70. https://doi.org/10.1016/0360-3016(95)00019-U.
  • Sklar C, Whitton J, Mertens A. Abnormalities of the thyroid in survivors of Hodgkin's disease: data from the Childhood Cancer Survivor Study. J Clin Endocrino Metab, 2000. 85(9): p. 3227-32. https:.
  • Smith GL, Smith BD, Giordano SH. et al. Risk of hypothyroidism in older breast cancer patients treated with radiation. Cancer, 2008. 112(6): p. 1371–9. https://doi.org/10.1002/cncr.23307.
  • Reinertsen KV, Cvancarova M, Wist E. et al. Thyroid function in women after multimodal treatment for breast cancer stage II/III: comparison with controls from a population sample. Int J Radiat Oncol Biol Phys, 2009. 75(3): p 764–770. https://doi.org/10.1016/j.ijrobp.2008.11.037.
  • Emami B, Layman J, Brown A. et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys, 1991. 21(1): p. 109-22. https://doi.org/10.1016/0360-3016(91)90171-y.
  • Johansen S, Reinertsen KV, Knutstad K, Olsen DR, Fossa SD. Dose distribution in the thyroid gland following radiation therapy of breast cancer--a retrospective study. Radiat Oncol, 2011. 6 (68). https://doi.org/10.1186/1748-717X-6-68.
  • Dogan N, Cuttino L, Lloyd R. et al. 2007, Optimized dose coverage of regional lymph nodes in breast cancer: the role of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys, 2007. 68(4): p. 1238-50. https://doi.org/10.1016/j.ijrobp.2007.03.059.
  • Yoden E, Soejima T, Maruta T. Hypothyroidism after radiotherapy to the neck. Nihon Igaku Hoshasen Gakkai Zasshi, 2004. 64(3): p. 146–150. PMID: 15148791.
  • Clark Schierle C., Winograd J.M. Radiation-induced brachial plexopathy: review. Complication without a cure. Reconstr Microsurg, 2004, 20(2): p. 149-52. https://doi.org/10.1055/s-2004-820771.
  • Pierce SM, Recht A, Lingos TI, Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys, 1992. 23(5): p. 915-23. DOI: 1https://doi.org/0.1016/0360-3016(92)90895-o.
  • Kirova YM, Recent advances in breast cancer radiotherapy: Evolution or revolution, or how to decrease cardiac toxicity? World J Radiol, 2010. 2(3): p. 103–108. https://doi.org/10.4329/wjr.v2.i3.103.
  • Welgemoed C, Coughlan S, Mcnaught P, Gujral D, Rıddle P. A dosimetric study to improve the quality of nodal radiotherapy in breast cancer. British Institute of Radiology, 2021. 2(1): 20210013. https://doi.org/10.1259/bjro.20210013.
  • Ambrose L, Stanton C, Lorraine L. et al. Potential gains: Comparison of a mono-isocentric threedimensional conformal radiotherapy (3D-CRT) planning technique to hybrid intensity-modulated radiotherapy (hIMRT) to the whole breast and supraclavicular fossa (SCF) region. J Med Radiat Sci, 2021. 62(3): p. 1–10. https://doi.org/10.1002/jmrs.126.
  • Woodward AW, Durand JB, Tucker SL, Strom EA, Perkins GH, Oh J, Arriaga L. et al. Prospective analysis of carotid artery flow in breast cancer patients TreateSd with supraclavicular irradiation 8 or more years previously: no increase in ipsilateral carotid stenosis after radiation noted. Cancer, 2008. 112(2): p. 268–73. https://doi.org/10.1002/cncr.23172.
  • Valachis A, Nilsson C. Cardiac risk in the treatment of breast cancer: assessment and management. Breast Cancer, 2015. 7: p. 21–35. https://doi.org/10.2147/BCTT.S47227.
  • Nilsson G, Holmberg L, Garmo H, Terent A, Blomqvist C. Radiation to supraclavicular and internal mammary lymph nodes in breast cancer increases the risk of stroke. Br J Cancer, 2009. 100(5): p. 811–6. https://doi.org/10.1038/sj.bjc.6604902.
  • Cheng SW, Ting ACW, Lam LK, Wei WI. Carotid stenosis after radiotherapy for nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg, 2000. 126(4): p. 517–21. https://doi.org/10.1001/archotol.126.4.517.
  • Dorresteijn LD, Kappelle AC, Boogerd W, Klokman WJ, Balm AJ, Keus RB. Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol, 2002. 20(1): p 282–8. https://doi.org/10.1200/JCO.2002.20.1.282.
  • Chera BS, Amdur RJ, Morris CG, Mendenhall WM. Carotid sparing intensity modulated radiotherapy for early-stage squamous cell carcinoma of the true vocal cord. Int J Radiat Oncol Biol Phys, 2010. 77(59 p. 1380–5. https://doi.org/10.1016/j.ijrobp.2009.07.1687.
  • Choi HS, Jeong BK, Jeong H, Song JH, Kim JP, Park JJ. Carotid sparing intensity modulated radiotherapy on early glottic cancer: preliminary study. Radiat Oncol J, 2016. 34(1): p. 26-33. https://doi.org/10.3857/roj.2016.34.1.26.
  • Erpolat OP. et al. The evaluation of the feasibility of carotid sparing intensity modulated radiation therapy technique for comprehensive breast irradiation, Physica Medica, 2017. 36: p. 60-65. https://doi.org/10.1016/j.ejmp.2017.01.008.

Evaluation of brachial plexus, carotid artery and thyroid doses in left breast radiotherapy

Yıl 2022, Cilt: 13 Sayı: 46, 174 - 181, 01.08.2022
https://doi.org/10.17944/mkutfd.1002684

Öz

Objective: In breast cancer radiotherapy (RT) application has an important role in the control and survival of the disease. In this study, it was aimed to evaluate the brachial plexus, carotid artery and thyroid doses in breast cancer patients who underwent RT.
Methods: Fifteen left breast cancer patients who underwent radical mastectomy were selected for our study. Three different radiotherapy plans were prepared with field-in-field (Field in Field (FinF)), static intensity modulated radiotherapy (S-IMRT) and dynamic intensity modulated radiotherapy (D-IMRT) techniques. Plans were evaluated in terms of planned target volume (PTV) doses, conformity index (CI) and homogeneity index (HI). Brachial plexus, left carotid artery and thyroid doses were compared as critical organs.
Results: The mean doses received by PTV were similar for the three techniques. Dort, V20, V30 (Gy) dose values of the thyroid were significantly decreased in the S-IMRT technique compared to the FinF and D-IMRT techniques (p<0.05). The V45 (Gy) value of the thyroid was significantly decreased in D-IMART and S-IMART techniques (p values 0.006, 0.005, respectively). Brachial plexus Dort (Gy) and V45 (Gy) values were found to be significantly lower in D-IMART and S-IMART techniques compared to FinF technique (p<0.05). Left carotid artery Dort value decreased significantly in S-IMRT technique (p=0.012).
Conclusion: It was found that brachial plexus, left carotid artery and thyroid doses were better preserved in D-IMART and S-IMART techniques in radiotherapy treatment for left breast that underwent radical mastectomy. When choosing a treatment plan for patients, individual planning should be preferred by considering the doses of critical structures.

Kaynakça

  • Ma J, Jemal A. Breast Cancer Statistics. In: Ahmad A. editor. Breast cancer metastasis and drug resistance progress and prospects. New York: Springer, 2013. 1-18. https://doi.org/10.1007/978-1-4614-5647-6.
  • Ferlay J, Héry C, Autier P. Sankaranarayanan R. Global burden of breast cancer. In: Li C, ed. Breast Cancer Epidemiology. New York, NY: Springer Inc, 2010. 1–19. https://doi.org/10.1007/978-1-4419-0685-4_1
  • Aras S, İkizceli T, Meryem A. Dosimetric Comparison of Three-Dimensional Conformal Radiotherapy (3D-CRT) and Intensity Modulated Radiotherapy Techniques (IMRT) with Radiotherapy Dose Simulations for Left-Sided Mastectomy Patients. Eur J Breast Health, 2019. 15(2): p 85-89. https://doi.org/ 10.5152/ejbh.2019.4619.
  • Steene J.V, Soete G, Storme G. Adjuvant radiotherapy for breast cancer significantly improves overall survival: the missing link. Radiotherapy and Oncology, 2000. 55(3): p. 263–272. https://doi.org/10.1016/s0167-8140(00)00204-8.
  • Onitilo AA, Engel JM, Stankowski RV, Doi SA. Survival comparisons for breast conserving surgery and mastectomy revisited: community experience and the role of radiation therapy. Clinical Medicine & Research, 2015. 13(2): p. 65–73. https://doi.org/10.3121/cmr.2014.1245.
  • Pignol J, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity‐modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol, 2008. 26813): p. 2085–2092. https://doi.org/10.1200/JCO.2007.15.2488.
  • Yusoff S, Chia D, Tang J. et al. Bilateral breast and regional nodal irradiation in early stage breast cancer a dosimetric comparison of IMRT and 3D conformal radiation therapy. Int J Radiat Oncol Biol Phys, 2012. 84(3):s223. https:.
  • Wang J. et al. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study. Med Dosim, 2014, 40(3), 190- 194. https://doi.org/10.1016/j.meddos.2014.11.004.
  • Ma C, Zhang W, Lu J. et al. Dosimetric comparison and evaluation of three radiotherapy techniques for use after modified radical mastectomy for locally advanced left-sided breast cancer. Scientific Reports, 2015, 21(5);12274. https://doi.org/10.1038/srep12274.
  • ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). J ICRU, 1999 32:1.
  • http://www. rtog.org/CoreLab/ContouringAtlases/BreastCencerAtlas. Aspx.
  • Gee H.E, Moses L, Stuart K, Nahar N, Tiver K, Wang T, Ward R, Ahern V. Contouring consensus guidelines in breast cancer radiotherapy: Comparison and systematic review of patterns of failure. J Med Imaging Radiat Oncol, 2019. 63(1), 102-115. https://doi.org/10.1111/1754-9485.12804.
  • Truong MT, Nadgir RN, Hirsch AE, Subramaniam RM, Wang JW, Wu R, Khandekar M, Nawaz AO, Sakai O. Brachial plexus contouring with CT and MR imaging in radiation therapy planning for head and neck cancer. Radiographics, 2010. 30(4): p. 1095-103. https://doi.org/10.1148/rg.304095105.
  • ICRU Report 83 Prescribing, recording, and Reporting Photon Beam İntensity Modulated Radiation Therapy (IMRT). J ICRU, 2010. 10:1 106.
  • ICRU Report 50 Prescribing, recording and reporting photon beam therapy. International Commission on Radiation Units and Measurements. 1993 p. 72.
  • Li X.A, Tai A, Arthur DW et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys, 2009. 73(3): p. 944-51. https://doi.org/10.1016/j.ijrobp.2008.10.034.
  • Hancock SL, McDougall IR, Constine LS. Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys, 1995. 31(5): p. 1165-70. https://doi.org/10.1016/0360-3016(95)00019-U.
  • Sklar C, Whitton J, Mertens A. Abnormalities of the thyroid in survivors of Hodgkin's disease: data from the Childhood Cancer Survivor Study. J Clin Endocrino Metab, 2000. 85(9): p. 3227-32. https:.
  • Smith GL, Smith BD, Giordano SH. et al. Risk of hypothyroidism in older breast cancer patients treated with radiation. Cancer, 2008. 112(6): p. 1371–9. https://doi.org/10.1002/cncr.23307.
  • Reinertsen KV, Cvancarova M, Wist E. et al. Thyroid function in women after multimodal treatment for breast cancer stage II/III: comparison with controls from a population sample. Int J Radiat Oncol Biol Phys, 2009. 75(3): p 764–770. https://doi.org/10.1016/j.ijrobp.2008.11.037.
  • Emami B, Layman J, Brown A. et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys, 1991. 21(1): p. 109-22. https://doi.org/10.1016/0360-3016(91)90171-y.
  • Johansen S, Reinertsen KV, Knutstad K, Olsen DR, Fossa SD. Dose distribution in the thyroid gland following radiation therapy of breast cancer--a retrospective study. Radiat Oncol, 2011. 6 (68). https://doi.org/10.1186/1748-717X-6-68.
  • Dogan N, Cuttino L, Lloyd R. et al. 2007, Optimized dose coverage of regional lymph nodes in breast cancer: the role of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys, 2007. 68(4): p. 1238-50. https://doi.org/10.1016/j.ijrobp.2007.03.059.
  • Yoden E, Soejima T, Maruta T. Hypothyroidism after radiotherapy to the neck. Nihon Igaku Hoshasen Gakkai Zasshi, 2004. 64(3): p. 146–150. PMID: 15148791.
  • Clark Schierle C., Winograd J.M. Radiation-induced brachial plexopathy: review. Complication without a cure. Reconstr Microsurg, 2004, 20(2): p. 149-52. https://doi.org/10.1055/s-2004-820771.
  • Pierce SM, Recht A, Lingos TI, Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys, 1992. 23(5): p. 915-23. DOI: 1https://doi.org/0.1016/0360-3016(92)90895-o.
  • Kirova YM, Recent advances in breast cancer radiotherapy: Evolution or revolution, or how to decrease cardiac toxicity? World J Radiol, 2010. 2(3): p. 103–108. https://doi.org/10.4329/wjr.v2.i3.103.
  • Welgemoed C, Coughlan S, Mcnaught P, Gujral D, Rıddle P. A dosimetric study to improve the quality of nodal radiotherapy in breast cancer. British Institute of Radiology, 2021. 2(1): 20210013. https://doi.org/10.1259/bjro.20210013.
  • Ambrose L, Stanton C, Lorraine L. et al. Potential gains: Comparison of a mono-isocentric threedimensional conformal radiotherapy (3D-CRT) planning technique to hybrid intensity-modulated radiotherapy (hIMRT) to the whole breast and supraclavicular fossa (SCF) region. J Med Radiat Sci, 2021. 62(3): p. 1–10. https://doi.org/10.1002/jmrs.126.
  • Woodward AW, Durand JB, Tucker SL, Strom EA, Perkins GH, Oh J, Arriaga L. et al. Prospective analysis of carotid artery flow in breast cancer patients TreateSd with supraclavicular irradiation 8 or more years previously: no increase in ipsilateral carotid stenosis after radiation noted. Cancer, 2008. 112(2): p. 268–73. https://doi.org/10.1002/cncr.23172.
  • Valachis A, Nilsson C. Cardiac risk in the treatment of breast cancer: assessment and management. Breast Cancer, 2015. 7: p. 21–35. https://doi.org/10.2147/BCTT.S47227.
  • Nilsson G, Holmberg L, Garmo H, Terent A, Blomqvist C. Radiation to supraclavicular and internal mammary lymph nodes in breast cancer increases the risk of stroke. Br J Cancer, 2009. 100(5): p. 811–6. https://doi.org/10.1038/sj.bjc.6604902.
  • Cheng SW, Ting ACW, Lam LK, Wei WI. Carotid stenosis after radiotherapy for nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg, 2000. 126(4): p. 517–21. https://doi.org/10.1001/archotol.126.4.517.
  • Dorresteijn LD, Kappelle AC, Boogerd W, Klokman WJ, Balm AJ, Keus RB. Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol, 2002. 20(1): p 282–8. https://doi.org/10.1200/JCO.2002.20.1.282.
  • Chera BS, Amdur RJ, Morris CG, Mendenhall WM. Carotid sparing intensity modulated radiotherapy for early-stage squamous cell carcinoma of the true vocal cord. Int J Radiat Oncol Biol Phys, 2010. 77(59 p. 1380–5. https://doi.org/10.1016/j.ijrobp.2009.07.1687.
  • Choi HS, Jeong BK, Jeong H, Song JH, Kim JP, Park JJ. Carotid sparing intensity modulated radiotherapy on early glottic cancer: preliminary study. Radiat Oncol J, 2016. 34(1): p. 26-33. https://doi.org/10.3857/roj.2016.34.1.26.
  • Erpolat OP. et al. The evaluation of the feasibility of carotid sparing intensity modulated radiation therapy technique for comprehensive breast irradiation, Physica Medica, 2017. 36: p. 60-65. https://doi.org/10.1016/j.ejmp.2017.01.008.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Original Articles
Yazarlar

Gökçen İnan 0000-0003-2995-0256

Osman Vefa Gül 0000-0002-6773-3132

Hamit Başaran 0000-0002-2122-8720

Yayımlanma Tarihi 1 Ağustos 2022
Gönderilme Tarihi 30 Eylül 2021
Kabul Tarihi 23 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 13 Sayı: 46

Kaynak Göster

Vancouver İnan G, Gül OV, Başaran H. Sol meme radyoterapisinde brakial pleksus, karotis arter ve tiroid dozlarının değerlendirilmesi. mkutfd. 2022;13(46):174-81.