Diferansiyel Fark Özelliklerinin Korunması ile Çok Katlı Değişkenlere Bağımlı Fonksiyonların G⊂E_n Bölgesi Dışına Genişletilmesi
Yıl 2018,
Cilt: 6 Sayı: 1, 493 - 500, 28.06.2018
Gülizar Alisoy
,
Sadiye Aktaş
Öz
Bu çalışmada, bölgesinde tanımlanmış “σ -yarım boynuz” ve “kuvvetli
σ -yarım boynuz” koşulunu sağlayan fonksiyonunun diferansiyel fark
özelliklerinin korunması şartıyla bölgesinin dışına genişletilmesine ilişkin gömülme
teoremleri biçiminde yeni sonuçlar verilmiştir.
Kaynakça
- [1] Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics: Third Edition, American Mathematical Society, p. 286, 1991.
[2] Nikolskii S.M., Functions with dominant mixed derivative, satisfying a multiple Hölder condition, Sibirsk. Mat. Zh. 4, 1342-1364, 1963.
[3] Besov O.V., Ilyin V.P., Nikolskii S.M. Integral Representations of Functions and Embedding Theorems Nauka, Moscow. 1996.
[4] Burenkov V.I., Fayn B.L., Extension of functions from anisotropic spaces with preservation of class. Steklov Mathematical Institute, 150, 52-66, 1979.
[5] Besov O.V., Dzhabrailov A.D. Classes of functions with generalized mixed Hölder condition, Steklov Mathematical Institute, FTMN. 105, 15-20 1969.
[6] Amanov T.I., Representation and imbedding theorems for the function spaces S (r) p,θ B(Rn) and S (r)*p,θ B, (0 ≥ xj ≥ 2π, j = 1,..., n), Trudy Mat. Inst. Steklov. 77, 5-34, 1965.
[7] Dzhabrailov A.D., Kerimova G.T., On a new integral representation by multiple differential-difference characteristic. Proceedings news of the Academy of Sciences of Azerbaijan, SSR, FTMN. 4, 23-27, 1988.
[8] Maksudov F.T., Dzhabrailov A.D.,The method of integral representations in the theory of spaces, V.1 Baku “Elm”, p. 200, 2000.
[9] Kerimova G.T., Properties of differential functions with repeated difference- differential characteristic depending on multi-package variables. PhD Thesis , Baku, p. 127. 1997.
[10] Kerimova G.T., Dzhabrailov A.D., Alisoy H.Z., Doğushan Ş. Dahilolma (Gömme) teoremleri biçimindeki eşitsizlikler, CBÜ Fen-Edebiyat Fakültesi Dergisi, Fen Bil. Seri (Matematik). 4, 31-37, 1998.
[11] Alisoy G.T., Alisoy H.Z. On integral representations of multi package variable functions, International Journal of Applied Mathematics, 11, 371-386, 2002.
[12] Alisoy G.T, Dzhabrailov A.D., Alisoy H.Z. Properties of functions in some weighted spaces, Applicable Analysis. 84, 405-417, 2005.
[13] Kudryavtsev S.N. Extension of functions from non-isotropic Nikol'skii-Besov spaces and the approximation of their derivatives, arXiv preprint arXiv:1703.09734, 2017.
[14] Mashiyev R.A., Cekic B., Avci M. Yucedag Z. Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Variables and Elliptic Equations. 57, 5, 579-595, 2012.
[15] Rabil M., Zehra Y., Sezgin O. Existence and multiplicity of solutions for a Dirichlet problem involving the discrete p(x)-Laplacian operatör Electronic Journal of Qualitative Theory of Differential Equations. 67, 1-10, 2011.
[16] Stasyuk S.A., Yanchenko, S.Y. Approximation of functions from Nikolskii–Besov type classes of generalized mixed smoothness, Analysis Mathematica. 41, 311-334, 2015.
Yıl 2018,
Cilt: 6 Sayı: 1, 493 - 500, 28.06.2018
Gülizar Alisoy
,
Sadiye Aktaş
Kaynakça
- [1] Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics: Third Edition, American Mathematical Society, p. 286, 1991.
[2] Nikolskii S.M., Functions with dominant mixed derivative, satisfying a multiple Hölder condition, Sibirsk. Mat. Zh. 4, 1342-1364, 1963.
[3] Besov O.V., Ilyin V.P., Nikolskii S.M. Integral Representations of Functions and Embedding Theorems Nauka, Moscow. 1996.
[4] Burenkov V.I., Fayn B.L., Extension of functions from anisotropic spaces with preservation of class. Steklov Mathematical Institute, 150, 52-66, 1979.
[5] Besov O.V., Dzhabrailov A.D. Classes of functions with generalized mixed Hölder condition, Steklov Mathematical Institute, FTMN. 105, 15-20 1969.
[6] Amanov T.I., Representation and imbedding theorems for the function spaces S (r) p,θ B(Rn) and S (r)*p,θ B, (0 ≥ xj ≥ 2π, j = 1,..., n), Trudy Mat. Inst. Steklov. 77, 5-34, 1965.
[7] Dzhabrailov A.D., Kerimova G.T., On a new integral representation by multiple differential-difference characteristic. Proceedings news of the Academy of Sciences of Azerbaijan, SSR, FTMN. 4, 23-27, 1988.
[8] Maksudov F.T., Dzhabrailov A.D.,The method of integral representations in the theory of spaces, V.1 Baku “Elm”, p. 200, 2000.
[9] Kerimova G.T., Properties of differential functions with repeated difference- differential characteristic depending on multi-package variables. PhD Thesis , Baku, p. 127. 1997.
[10] Kerimova G.T., Dzhabrailov A.D., Alisoy H.Z., Doğushan Ş. Dahilolma (Gömme) teoremleri biçimindeki eşitsizlikler, CBÜ Fen-Edebiyat Fakültesi Dergisi, Fen Bil. Seri (Matematik). 4, 31-37, 1998.
[11] Alisoy G.T., Alisoy H.Z. On integral representations of multi package variable functions, International Journal of Applied Mathematics, 11, 371-386, 2002.
[12] Alisoy G.T, Dzhabrailov A.D., Alisoy H.Z. Properties of functions in some weighted spaces, Applicable Analysis. 84, 405-417, 2005.
[13] Kudryavtsev S.N. Extension of functions from non-isotropic Nikol'skii-Besov spaces and the approximation of their derivatives, arXiv preprint arXiv:1703.09734, 2017.
[14] Mashiyev R.A., Cekic B., Avci M. Yucedag Z. Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Variables and Elliptic Equations. 57, 5, 579-595, 2012.
[15] Rabil M., Zehra Y., Sezgin O. Existence and multiplicity of solutions for a Dirichlet problem involving the discrete p(x)-Laplacian operatör Electronic Journal of Qualitative Theory of Differential Equations. 67, 1-10, 2011.
[16] Stasyuk S.A., Yanchenko, S.Y. Approximation of functions from Nikolskii–Besov type classes of generalized mixed smoothness, Analysis Mathematica. 41, 311-334, 2015.