Araştırma Makalesi
BibTex RIS Kaynak Göster

Catalytic membrane contactor, Polyoxometalates, FT-IR, SEM, EDS analysis

Yıl 2018, Cilt: 6 Sayı: 2, 539 - 544, 24.12.2018

Öz

In this study, 10-molybdo-2-vanadophosphoric (decamolydodivanadophosphoric) acid called POM having catalytic property, was initially synthesized and Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were carried out. Afterwards, POM was modified to the commercial Polyvinylidene Fluoride (PVDF) membrane surface to produce a new catalytic membrane contactor (CMC). FT-IR, SEM, and EDS characterization of the CMC were performed to clarify that the POM was modified to the membrane. Then, contact angle, pure water fluxes and pore size of the CMC and unmodified PVDF membranes were analysed and compared. Consequently, according to FT-IR and EDS analyses, the CMC was produced successfully and according to contact angle results, this membrane has more hydrophilic than PVDF membrane. Moreover, when the pure water flux values were compared, the CMC fluxes were less than that of PVDF membrane.

Kaynakça

  • [1]. Ammam M. Polyoxometalates: formation, structures, principal properties. main deposition methods and application in sensing, Journal of Materials Chemistry. 1,6291-6312, 2013.
  • [2]. Muller A,, Krickemeyer E., Meyer J., Ogge H. B., Peters F., Plass W., Diemann E., Dillinger S., Nonnenbruch F., Randerath M., Menke C. [Mo154(No)14O420 (OH)28(H2O)70](255) a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24 000, Angew. Chem., Int. Ed, 34. 2122-2124, 1995.
  • [3]. Müller A., Beckmann E., Bogge H., Schmidtmann M., Dress A. Inorganic Chemistry Goes Protein Size: A Mo368Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking, Angew. Chem. Int. Ed. 41, 1162-1167, 2002.
  • [4]. Yao L., Zhang L. Z., Wang R., Loh C. H., Dong Z. L. Fabrication of catalytic membrane contactors based on polyoxometalates and polyvinylidene fluoride intended for degrading phenol in wastewater under mild conditions, Separation and Purification Technology. 118, 162–169, 2013.
  • [5]. Gkika E., Troupis A., Hiskia A., Papaconstantinou E. Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates, Appl. Catal. 62, 28–34, 2006.
  • [6]. Yang C., Tian L., Ye L., Peng T., Deng K., Zan L. Enhancement of photocatalytic degradation activity of poly(vinyl chloride)-TiO2 nanocomposite film with polyoxometalate, J. Appl. Polym. Sci. 120, 2048–2053, 2011.
  • [7]. Zhao S., Wang X., Huo M. Catalytic wet air oxidation of phenol with air and micellar molybdovanadophosphoric polyoxometalates under room condition, Appl. Catal. 97, 127–134, 2010.
  • [8]. Sun C., Zhang C., Li A., Jiang C., Wang X., Huo M. A micellar polyoxoperoxometalate [C16H33N(CH3)3]7[PW10Ti2O38(O2)2]: a highly efficient and stable catalyst for air oxidation of thiocyanate under room conditions, Catal. Commun. 12, 384–387, 2011.
  • [9]. Inumaru K., Ishihara T., Kamiya Y., Okuhara T., Yamanaka S. Water-tolerant, highly active solid acid catalysts composed of the keggin-type polyoxometalate H3PW12O40 immobilized in hydrophobic nanospaces of organomodified mesoporous silica, Angew. Chem. 119, 7769–7772. 2007.
  • [10]. Fontananova E., Donato L., Drioli E., Lopez J. L., Favia P., d’Agostino R. Heterogenization of polyoxometalates on the surface of plasma-modified polymeric membranes,. Chem. Mater. 18, 1561–1568. 2006.
  • [11]. Yao L., Lua S. K., Zhang L., Wang R., Dong Z., Dye removal by surfactant encapsulated polyoxometalates,. Journal of Hazardous Materials. 280, 428–435. 2014.
  • [12]. Zhang S. F., Wu L.L., Deng F.R., Zhao D.P., Zhang C., Zhang C.Z. Hydrophilicmodification of PVDF porous membrane via a simple dip-coating method in plant tannin solution, RSC Adv. 6, 71287–72194, 2016.
  • [13]. Liu C., Wu L., Zhang C., Chen W., Luo S. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine, Applied Surface Science. 457, 695–704, 2018.
  • [14]. Zhu Y., Wang F.,. Liu L., Xiao S., Chang Z., Wu Y., Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery, Energy Environ. Sci. 6, 618–624, 2013.
  • [15]. Cao Z., Hao T., Wang P.,. Zhang Y., Cheng B., Yuan T., Meng J. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation, Chem. Eng. J. 309 30–40, 2017.
  • [16]. Zeng G., Ye Z., He Y., Yang X ., Ma J., Shi H., Feng Z. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater, Chemical Engineering Journal 323 572–583 2017.
  • [17]. George B., Tsıgdınos A., Hallada C. J., Molybdovanadophosphoric Acids and Their Salts. I. Investigation of Methods of Preparation and Characterization, inorganic chemistry.7, 437–441. 1968.
  • [18]. Sun W., Chen T., Chen C., Li J., A study on membrane morphology by digital image processing, Journal of Membrane Science. 305, 93–102, 2007.
  • [19]. Wang L., Wang X., Study of membrane morphology by microscopic image analysis and membrane structure parameter model, Journal of Membrane Science 283, 109–115, 2006.
  • [20]. Zhao Y-H., Qian Y-L., Zhu B-K., Xu Y-Y., Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process, ournal of Membrane Science 310, 567–576, 2008.
  • [21]. Rezvani M. A., Asli M. A. N., Abdollahi L., Oveisi M. Nano composite mixed-addenda vanadium substituted polyoxometalate-TiO2 as a green, reusable and efficient catalyst for rapid and efficient synthesis of symmetric disulfides under ultrasound irradiation, Chemistry of Solid Materials. 2, 41-51. 2014.
  • [22]. Chavan L. D., Shankarwar S. G., KSF supported 10-molybdo-2-vanadophosphoric acid as an efficient and reusable catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazole derivatives under solvent-free condition, Chinese Journal of Catalysis. 36, 1054–1059, 2015.
  • [23]. Kumar D., Landry C. C., Immobilization of a Mo, V-polyoxometalate on cationically modified mesoporous silica: synthesis and characterization studies, Microporous Mesoporous Mater. 98, 309–316. 2007.
  • [24]. Yang D-Q., Rochette J. F., Sacher E. Spectroscopic evidence for p–p interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes, J. Phys. Chem. B 109, 4481–4484. 2005.
  • [25]. Tangestaninejad S., Moghadam M., Mirkhani V., Mohammadpoor-Baltork I., Salavati H. Vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles: a recoverable and efficient catalyst for photochemical, sonochemical and photosonochemical degradation of dyes under irradiation of UV light,. J. Iran. Chem. Soc. 7, 14. 2010.
  • [26]. Arichi J., Pereira M. M., Esteves P. M., Louis B. Synthesis of Keggin-type polyoxometalate crystals,. Solid State Sciences. 12, 1866–1869. 2010.

POM Temelli Katalitik Membran Kontaktörün Hazırlanması ve Karakterize Edilmesi

Yıl 2018, Cilt: 6 Sayı: 2, 539 - 544, 24.12.2018

Öz

Bu çalışmada ilk olarak katalizör özelliği
olan POM olarak adlandırılan 10-molibdo-2-vanadofosforik (decamolybdodivanadophosphoric)
asit sentezlenmiştir. Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR),
taramalı elektron mikroskobu (SEM), enerji dağılım spektroskopisi (EDS) ve X-ışınımı
kırınımı (XRD) kullanılarak üretilen malzemenin analizleri
gerçekleştirilmiştir. Devamında yeni bir katalitik membran kontaktör (CMC)
oluşturmak için ticari polivinildin florid (PVDF) yüzeyine, üretilen POM
modifiye edilmiştir. POM’un membran yüzeyine modifiye edildiğini göstermek için
bu katalitik membranın FT-IR, SEM ve EDS karakterizasyonu yapılmıştır. Daha
sonra CMC ve modifiye edilmemiş PVDF membranların, temas açısı, saf su akıları
ve membran gözenek (por) analizleri yapılarak karşılaştırılmıştır. Sonuçlar
irdelendiğinde FT-IR ve EDS analizlerine göre, CMC membran başarılı bir şekilde
üretilmiştir ve temas açısı sonuçlarına göre CMC membran, PVDF membrana göre
daha hidrofilik olduğu bulunmuştur. Ayrıca, her iki membranın saf su akı
değerleri karşılaştırıldığında, CMC membranın saf su akısı PVDF membrana göre
azaldığı bulunmuştur
.

Kaynakça

  • [1]. Ammam M. Polyoxometalates: formation, structures, principal properties. main deposition methods and application in sensing, Journal of Materials Chemistry. 1,6291-6312, 2013.
  • [2]. Muller A,, Krickemeyer E., Meyer J., Ogge H. B., Peters F., Plass W., Diemann E., Dillinger S., Nonnenbruch F., Randerath M., Menke C. [Mo154(No)14O420 (OH)28(H2O)70](255) a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24 000, Angew. Chem., Int. Ed, 34. 2122-2124, 1995.
  • [3]. Müller A., Beckmann E., Bogge H., Schmidtmann M., Dress A. Inorganic Chemistry Goes Protein Size: A Mo368Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking, Angew. Chem. Int. Ed. 41, 1162-1167, 2002.
  • [4]. Yao L., Zhang L. Z., Wang R., Loh C. H., Dong Z. L. Fabrication of catalytic membrane contactors based on polyoxometalates and polyvinylidene fluoride intended for degrading phenol in wastewater under mild conditions, Separation and Purification Technology. 118, 162–169, 2013.
  • [5]. Gkika E., Troupis A., Hiskia A., Papaconstantinou E. Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates, Appl. Catal. 62, 28–34, 2006.
  • [6]. Yang C., Tian L., Ye L., Peng T., Deng K., Zan L. Enhancement of photocatalytic degradation activity of poly(vinyl chloride)-TiO2 nanocomposite film with polyoxometalate, J. Appl. Polym. Sci. 120, 2048–2053, 2011.
  • [7]. Zhao S., Wang X., Huo M. Catalytic wet air oxidation of phenol with air and micellar molybdovanadophosphoric polyoxometalates under room condition, Appl. Catal. 97, 127–134, 2010.
  • [8]. Sun C., Zhang C., Li A., Jiang C., Wang X., Huo M. A micellar polyoxoperoxometalate [C16H33N(CH3)3]7[PW10Ti2O38(O2)2]: a highly efficient and stable catalyst for air oxidation of thiocyanate under room conditions, Catal. Commun. 12, 384–387, 2011.
  • [9]. Inumaru K., Ishihara T., Kamiya Y., Okuhara T., Yamanaka S. Water-tolerant, highly active solid acid catalysts composed of the keggin-type polyoxometalate H3PW12O40 immobilized in hydrophobic nanospaces of organomodified mesoporous silica, Angew. Chem. 119, 7769–7772. 2007.
  • [10]. Fontananova E., Donato L., Drioli E., Lopez J. L., Favia P., d’Agostino R. Heterogenization of polyoxometalates on the surface of plasma-modified polymeric membranes,. Chem. Mater. 18, 1561–1568. 2006.
  • [11]. Yao L., Lua S. K., Zhang L., Wang R., Dong Z., Dye removal by surfactant encapsulated polyoxometalates,. Journal of Hazardous Materials. 280, 428–435. 2014.
  • [12]. Zhang S. F., Wu L.L., Deng F.R., Zhao D.P., Zhang C., Zhang C.Z. Hydrophilicmodification of PVDF porous membrane via a simple dip-coating method in plant tannin solution, RSC Adv. 6, 71287–72194, 2016.
  • [13]. Liu C., Wu L., Zhang C., Chen W., Luo S. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine, Applied Surface Science. 457, 695–704, 2018.
  • [14]. Zhu Y., Wang F.,. Liu L., Xiao S., Chang Z., Wu Y., Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery, Energy Environ. Sci. 6, 618–624, 2013.
  • [15]. Cao Z., Hao T., Wang P.,. Zhang Y., Cheng B., Yuan T., Meng J. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation, Chem. Eng. J. 309 30–40, 2017.
  • [16]. Zeng G., Ye Z., He Y., Yang X ., Ma J., Shi H., Feng Z. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater, Chemical Engineering Journal 323 572–583 2017.
  • [17]. George B., Tsıgdınos A., Hallada C. J., Molybdovanadophosphoric Acids and Their Salts. I. Investigation of Methods of Preparation and Characterization, inorganic chemistry.7, 437–441. 1968.
  • [18]. Sun W., Chen T., Chen C., Li J., A study on membrane morphology by digital image processing, Journal of Membrane Science. 305, 93–102, 2007.
  • [19]. Wang L., Wang X., Study of membrane morphology by microscopic image analysis and membrane structure parameter model, Journal of Membrane Science 283, 109–115, 2006.
  • [20]. Zhao Y-H., Qian Y-L., Zhu B-K., Xu Y-Y., Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process, ournal of Membrane Science 310, 567–576, 2008.
  • [21]. Rezvani M. A., Asli M. A. N., Abdollahi L., Oveisi M. Nano composite mixed-addenda vanadium substituted polyoxometalate-TiO2 as a green, reusable and efficient catalyst for rapid and efficient synthesis of symmetric disulfides under ultrasound irradiation, Chemistry of Solid Materials. 2, 41-51. 2014.
  • [22]. Chavan L. D., Shankarwar S. G., KSF supported 10-molybdo-2-vanadophosphoric acid as an efficient and reusable catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazole derivatives under solvent-free condition, Chinese Journal of Catalysis. 36, 1054–1059, 2015.
  • [23]. Kumar D., Landry C. C., Immobilization of a Mo, V-polyoxometalate on cationically modified mesoporous silica: synthesis and characterization studies, Microporous Mesoporous Mater. 98, 309–316. 2007.
  • [24]. Yang D-Q., Rochette J. F., Sacher E. Spectroscopic evidence for p–p interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes, J. Phys. Chem. B 109, 4481–4484. 2005.
  • [25]. Tangestaninejad S., Moghadam M., Mirkhani V., Mohammadpoor-Baltork I., Salavati H. Vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles: a recoverable and efficient catalyst for photochemical, sonochemical and photosonochemical degradation of dyes under irradiation of UV light,. J. Iran. Chem. Soc. 7, 14. 2010.
  • [26]. Arichi J., Pereira M. M., Esteves P. M., Louis B. Synthesis of Keggin-type polyoxometalate crystals,. Solid State Sciences. 12, 1866–1869. 2010.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ali Kemal Topaloglu 0000-0001-5851-6614

Yılmaz Yıldırım

Yayımlanma Tarihi 24 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 2

Kaynak Göster

APA Topaloglu, A. K., & Yıldırım, Y. (2018). POM Temelli Katalitik Membran Kontaktörün Hazırlanması ve Karakterize Edilmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(2), 539-544.
AMA Topaloglu AK, Yıldırım Y. POM Temelli Katalitik Membran Kontaktörün Hazırlanması ve Karakterize Edilmesi. MAUN Fen Bil. Dergi. Aralık 2018;6(2):539-544.
Chicago Topaloglu, Ali Kemal, ve Yılmaz Yıldırım. “POM Temelli Katalitik Membran Kontaktörün Hazırlanması Ve Karakterize Edilmesi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6, sy. 2 (Aralık 2018): 539-44.
EndNote Topaloglu AK, Yıldırım Y (01 Aralık 2018) POM Temelli Katalitik Membran Kontaktörün Hazırlanması ve Karakterize Edilmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6 2 539–544.
IEEE A. K. Topaloglu ve Y. Yıldırım, “POM Temelli Katalitik Membran Kontaktörün Hazırlanması ve Karakterize Edilmesi”, MAUN Fen Bil. Dergi., c. 6, sy. 2, ss. 539–544, 2018.
ISNAD Topaloglu, Ali Kemal - Yıldırım, Yılmaz. “POM Temelli Katalitik Membran Kontaktörün Hazırlanması Ve Karakterize Edilmesi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6/2 (Aralık 2018), 539-544.
JAMA Topaloglu AK, Yıldırım Y. POM Temelli Katalitik Membran Kontaktörün Hazırlanması ve Karakterize Edilmesi. MAUN Fen Bil. Dergi. 2018;6:539–544.
MLA Topaloglu, Ali Kemal ve Yılmaz Yıldırım. “POM Temelli Katalitik Membran Kontaktörün Hazırlanması Ve Karakterize Edilmesi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, c. 6, sy. 2, 2018, ss. 539-44.
Vancouver Topaloglu AK, Yıldırım Y. POM Temelli Katalitik Membran Kontaktörün Hazırlanması ve Karakterize Edilmesi. MAUN Fen Bil. Dergi. 2018;6(2):539-44.