Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Haptik Robot için Arayüz Tasarımı ve Performans Analizi

Yıl 2018, Cilt: 6 Sayı: 2, 553 - 560, 24.12.2018

Öz

Teleoperasyon sistemleri insan-robot etkileşimini
sağlayan bir robot teknolojisidir. Haptik robotlar ve ara yüzler kuvveti
hissetmemize yarayan, sanal ortamdaki cisimlere dokunma, onları hissetme,
kontrol etme ve düzenlemeye imkân veren sistemlerdir. Bilgisayar donanımı ve
insan makine arayüzlerinin geliştirilmesiyle, araştırmacılar sanal gerçeklik
teknolojisini etkileşimli hareket planlama sistemlerine dahil etmişlerdir.
Phantom omni robotun interaktif yol planlaması, doğrulaması ve eğitimi için
haptik bir arayüz geliştirilmiştir. Yapılan çalışmada, altı serbestlik dereceli
Phantom Omni dokunsal cihaz ile altı serbestlik dereceli sanal slave robot kolu
arasındaki yapısal benzerliğe dayanarak, Phantom Omni tarafından yönlendirilen
altı DOF sanal robot kolu modellenmiştir. Çalışmada sunulan haptik tabanlı sanal
robot ile insan robot etkileşim gerçekleştirilmiştir. Yapılan çalışmalar sonucunda gerçek master robot–sanal  slave robotlar arasinda teleoperasyon ile
referans konum , hız ve kuvvet değerleri büyük ölçüde takip ettiği grafiklerde
gösterilmistir.
Sonuç olarak bu çalışmada görsel arayüz oluşturulmuş ve
teleoperasyon ile konum ve hız kontrolü gerçekleştirilmiştir. Performans
sonuçları grafiksel olarak verilmiştir ve başarılı olduğu görülmüştür.


Kaynakça

  • [1] Vertut, J., Coiffent, P. Teleoperation and Robotics. Evolution and Development. Kopan Page. London, 1985.
  • [2] Goertz, R.C., Thompson R.C. Electronically controlled manipulator. Nucleonics, 12:11 46-47, 1954.
  • [3] Katsura S., Iida W., Ohnishi K. Medical mechatronics An application to haptic forceps, Annual Reviews in Control, 29:2 237-245. 2005.
  • [4] Veras E., Khokar K., Alqasemi R., Dubey R. Scaled telerobotic control of a manipulator in real time with laser assistance for adl tasks. Mechatronics and its Applications International Symposium on Mechatronics and its Applications, March 2009.
  • [5] Song G., Guo S. Development of a novel tele-rehabilitation system. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, p.785-789 2006.
  • [6] Wang P., Becker A.A., Jones I.A., Glover A.T., Benford S.D., Greenhalgh C.M., Vloeberghs M. A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback, Computer methods and programs in biomedicine, 84 11-18, 2006.
  • [7] Fahlbusch St., Mazerolle S. Breguet JM., Steinecker A., Agnus J., P´erez R., Michler J. Nanomanipulation in a scanning electron microscope, Journal of Materials Processing Technology, 167:2 371-382, 2005.
  • [8] Park K., Bae B., Koo T.A haptic device for PC video game application, Mechatronics, 14:2 227-235, 2004.
  • [9] Massie T.H., Salisbury J.K. The phantom haptic interface: A device for probing virtual objects. In Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, 55:1 295-300, 1994.
  • [10] Sensable Technologies Corporation, http://www.sensable.com/.
  • [11] Diolaiti N. Melchiorri C. Teleoperation of a mobile robot through haptic feedback, IEEE Int.Workshop on Haptic Virtual Environments and Their Applications, 2002 67-72, 2002.
  • [12] Nygaard A. High-Level Control System for Remote Controlled Surgical Robots Haptic Guidance of Surgical Robot, Master thesis of Science in Engineering Cybernetics, Department of Engineering Cybernetics, Norwegian University of Science and Technology, 2008.
  • [13] Dominguez-Ramirez O.A., Parra-Vega V. Texture, roughness, and shape haptic perception of deformable virtual objects with constrained Lagrangian formulation. In Intelligent Robots and Systems, IEEE/RSJ International Conference on 4 3106-3111, 2003.
  • [14] Cavusoglu M.C., Feygın D. Kinematics and dynamics of PHANToM(TM) model 1.5 haptic interface. (Tech. Rep.). University of California at Berkeley, Electronics Research Laboratory Memo M01/15, 2001.
  • [15] Cavusoglu M., Feygın D., Tendıck F. A Critical Study of the Mechanical and Electrical Properties of the PHANToM Haptic Interface and Improvements for High Performance Control. Presence: Teleoperators and Virtual Environments, 11:6 :555-568, 2002.
  • [16] Silva A.J., Ramirez O.A.D., Vega V.P., Oliver J.P.O., PHANToM Omni Haptic Device: Kinematic and Manipulability, Electronics, Robotics and Automotive Mechanics Conference, CERMA, 193-198, 2009.
  • [17] Pere E, Langrana N, Gomez D, Burdea G.C. Virtual mechanical assembly on a PC-based system. In: Proceedings of the ASME design engineering technical conference and computers in engineering, Irvine, California, 1996.
  • [18] Kyung K.U., Park J., Kwon D.S., Kim S.Y. Real-Time Area- Based Haptic Rendering for a Palpation Simulator. In M. Harders and G. Sz´ekely, editors, Biomedical Simulation, Springer Berlin Heidelberg, Berlin, Heidelberg, 4072:15 132-141. 2006.
  • [19] McNeely W.A., Puterbaugh K.D., James T.J. Six degree-offreedom haptic rendering using voxel sampling. Six degree-of-freedom haptic rendering using voxel sampling. In: ACM SIGGRAPH 2005 Courses. ACM, p.42, 2005.
  • [20] Tsui P.H., Lin L.Y., Chang C.C., Hwang J.J., Lin J.J., Chu C.C., Chen C.N., Chang K.J., Chang C.C. Arterial pulse waveform analysis by the probability distribution of amplitude. Physiological Measurement, 8:8 803-812, 2007.
  • [21] Yuan X.B., Yang S.X. Interactive assembly planning with automatic path generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 3965-3970, 2004.
  • [22] Mikchevitch A., Leon J.C., Gouskov A. Path planning of an AFM-based nanomanipulator using virtual force reflection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 577-582, 2004.
  • [23] Mikchevitch A., Leon J.C., Gouskov A. Path planning for flexible components using a virtual reality environment. In: 5th IEEE International Symposium on Assembly and Task Planning, 247-252, 2003.
  • [24] Freire J.C., Jr., De Lima J.V., Neves R.A., De Sena G.J. A multimedia environment for supporting the teaching of robotics systems. In: Proceedings of the 24th International Conference on Distributed Computing Systems Workshops, 280-285, 2004.
  • [25] Miner N.E., Stansfield S.A. Interactive virtual reality simulation system for robot control and operator training. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1428-1435, 1994.
  • [26] Abut T., Servet S. Real-time control of bilateral teleoperation system with adaptive computed torque method. Industrial Robot: An International Journal, 44:3 299-311, 2017.
  • [27] Soyguder S., Abut T. Haptic industrial robot control with variable time, Industrial Robot: AnInternational Journal, 43:4 390-402, 2016.
  • [28] Abut T., Servet S. Zaman Gecikmeli İnsan-Makine Etkileşimli Teleoperasyon Sisteminin Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30 1193-202, 2018.
  • [29] Abut T., Servet S. Haptic industrial robot control and bilateral teleoperation by using a virtual visual interface, 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018.
  • [30] Abut T., Servet S. Motion control in virtual reality based teleoperation system. In Signal Processing and Communications Applications Conference (SIU), 23th IEEE, 2682-2685, 2015.
  • [31] Denavit J., Hartenberg R.S. A kinematic notation for Lower-pair mechanisms based on matrices, ASME Jappl. Mechan, 215-221, 1955.
  • [32] Bingül Z., Küçük S. Robot Tekniği I, Birsen Yayınevi, 104-200, 2005.
  • [33] Abut T. Altı Serbestlik Dereceli Haptik Robot ile Teleoperasyon ve Sistem Dinamiği, Yüksek lisans Tezi, Fırat Üniversitesi, Elazig, 2015.
  • [34] Asada H., Slotine J.J.E. Robot Analysis and Control, Wiley-Interscience Publication, USA, 1986.
  • [35] Kerrow F.J.M. Introduction to Robotics, Addison-Wesley Publishing, USA, 1991.
  • [36] Sreelakshmi M., Subash T. D. Haptic Technology: A comprehensive review on its applications and future prospects. Materials Today: Proceedings, 4:2 4182-4187, 2017.
  • [37] Hazewinkel M. Lagrange equations (in mechanics)”, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4, 2001.
  • [38] Abut T., Servet S. Alli H. Gercek Zamanli Alti Serbestlik Dereceli Haptik Bir Robot ile Sanal Robotun Teleoperasyonu’ UMTS 2015 Bildiri Kitabı, Izmir, 2015b.
  • [39] Ziegler J.B. Nichols N.B. The classic original paper: Optimum settings for automatic controllers”, ASME Transactions, 64 759-768, 1942.
  • [40] Tuong D.N., Seeger M., Peters J. Computed torque control with nonparametric regression models”, Proceedings of the 2008 American Control Conference (ACC), Seattle, 2008.
  • [41] Middleton R.H. Goodwin G.C. Adaptive computed torque control for rigid link manipulators, Systems and Control Letter, 10 9-16, 1988.

Interface Design and Performance Analysis for a Haptic Robot

Yıl 2018, Cilt: 6 Sayı: 2, 553 - 560, 24.12.2018

Öz

Teleoperation systems are robot technologies that enable human-robot interaction. Haptic robots and interfaces are systems that allow you to feel, control, and organize objects in virtual environments that do not feel strength. With the development of computer hardware and human machine interfaces, researchers have incorporated virtual reality technology into interactive motion planning systems. Phantom omni robot has developed a haptic interface for interactive road planning verification and training. Based on the structural similarity between the six-degree-of-freedom Phantom Omni tactile device and the six-degree-of-freedom virtual slave robot arm, six DOF virtual robot rods driven by the Phantom Omni were modeled. Human robot interaction with the haptic-based virtual robot presented in the study was realized. As a result of the studies made, it is shown in the graphs that the reference master position, speed and force values are followed in great scale by the actual master robot-virtual slave robot by teleoperation. Consequently, a visual interface was created in this study and the position, velocity, and force control were performed by teleoperation. The performance results were given graphically and were found to be successful.




Kaynakça

  • [1] Vertut, J., Coiffent, P. Teleoperation and Robotics. Evolution and Development. Kopan Page. London, 1985.
  • [2] Goertz, R.C., Thompson R.C. Electronically controlled manipulator. Nucleonics, 12:11 46-47, 1954.
  • [3] Katsura S., Iida W., Ohnishi K. Medical mechatronics An application to haptic forceps, Annual Reviews in Control, 29:2 237-245. 2005.
  • [4] Veras E., Khokar K., Alqasemi R., Dubey R. Scaled telerobotic control of a manipulator in real time with laser assistance for adl tasks. Mechatronics and its Applications International Symposium on Mechatronics and its Applications, March 2009.
  • [5] Song G., Guo S. Development of a novel tele-rehabilitation system. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, p.785-789 2006.
  • [6] Wang P., Becker A.A., Jones I.A., Glover A.T., Benford S.D., Greenhalgh C.M., Vloeberghs M. A virtual reality surgery simulation of cutting and retraction in neurosurgery with force-feedback, Computer methods and programs in biomedicine, 84 11-18, 2006.
  • [7] Fahlbusch St., Mazerolle S. Breguet JM., Steinecker A., Agnus J., P´erez R., Michler J. Nanomanipulation in a scanning electron microscope, Journal of Materials Processing Technology, 167:2 371-382, 2005.
  • [8] Park K., Bae B., Koo T.A haptic device for PC video game application, Mechatronics, 14:2 227-235, 2004.
  • [9] Massie T.H., Salisbury J.K. The phantom haptic interface: A device for probing virtual objects. In Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, 55:1 295-300, 1994.
  • [10] Sensable Technologies Corporation, http://www.sensable.com/.
  • [11] Diolaiti N. Melchiorri C. Teleoperation of a mobile robot through haptic feedback, IEEE Int.Workshop on Haptic Virtual Environments and Their Applications, 2002 67-72, 2002.
  • [12] Nygaard A. High-Level Control System for Remote Controlled Surgical Robots Haptic Guidance of Surgical Robot, Master thesis of Science in Engineering Cybernetics, Department of Engineering Cybernetics, Norwegian University of Science and Technology, 2008.
  • [13] Dominguez-Ramirez O.A., Parra-Vega V. Texture, roughness, and shape haptic perception of deformable virtual objects with constrained Lagrangian formulation. In Intelligent Robots and Systems, IEEE/RSJ International Conference on 4 3106-3111, 2003.
  • [14] Cavusoglu M.C., Feygın D. Kinematics and dynamics of PHANToM(TM) model 1.5 haptic interface. (Tech. Rep.). University of California at Berkeley, Electronics Research Laboratory Memo M01/15, 2001.
  • [15] Cavusoglu M., Feygın D., Tendıck F. A Critical Study of the Mechanical and Electrical Properties of the PHANToM Haptic Interface and Improvements for High Performance Control. Presence: Teleoperators and Virtual Environments, 11:6 :555-568, 2002.
  • [16] Silva A.J., Ramirez O.A.D., Vega V.P., Oliver J.P.O., PHANToM Omni Haptic Device: Kinematic and Manipulability, Electronics, Robotics and Automotive Mechanics Conference, CERMA, 193-198, 2009.
  • [17] Pere E, Langrana N, Gomez D, Burdea G.C. Virtual mechanical assembly on a PC-based system. In: Proceedings of the ASME design engineering technical conference and computers in engineering, Irvine, California, 1996.
  • [18] Kyung K.U., Park J., Kwon D.S., Kim S.Y. Real-Time Area- Based Haptic Rendering for a Palpation Simulator. In M. Harders and G. Sz´ekely, editors, Biomedical Simulation, Springer Berlin Heidelberg, Berlin, Heidelberg, 4072:15 132-141. 2006.
  • [19] McNeely W.A., Puterbaugh K.D., James T.J. Six degree-offreedom haptic rendering using voxel sampling. Six degree-of-freedom haptic rendering using voxel sampling. In: ACM SIGGRAPH 2005 Courses. ACM, p.42, 2005.
  • [20] Tsui P.H., Lin L.Y., Chang C.C., Hwang J.J., Lin J.J., Chu C.C., Chen C.N., Chang K.J., Chang C.C. Arterial pulse waveform analysis by the probability distribution of amplitude. Physiological Measurement, 8:8 803-812, 2007.
  • [21] Yuan X.B., Yang S.X. Interactive assembly planning with automatic path generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 3965-3970, 2004.
  • [22] Mikchevitch A., Leon J.C., Gouskov A. Path planning of an AFM-based nanomanipulator using virtual force reflection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 577-582, 2004.
  • [23] Mikchevitch A., Leon J.C., Gouskov A. Path planning for flexible components using a virtual reality environment. In: 5th IEEE International Symposium on Assembly and Task Planning, 247-252, 2003.
  • [24] Freire J.C., Jr., De Lima J.V., Neves R.A., De Sena G.J. A multimedia environment for supporting the teaching of robotics systems. In: Proceedings of the 24th International Conference on Distributed Computing Systems Workshops, 280-285, 2004.
  • [25] Miner N.E., Stansfield S.A. Interactive virtual reality simulation system for robot control and operator training. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1428-1435, 1994.
  • [26] Abut T., Servet S. Real-time control of bilateral teleoperation system with adaptive computed torque method. Industrial Robot: An International Journal, 44:3 299-311, 2017.
  • [27] Soyguder S., Abut T. Haptic industrial robot control with variable time, Industrial Robot: AnInternational Journal, 43:4 390-402, 2016.
  • [28] Abut T., Servet S. Zaman Gecikmeli İnsan-Makine Etkileşimli Teleoperasyon Sisteminin Kontrolü. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30 1193-202, 2018.
  • [29] Abut T., Servet S. Haptic industrial robot control and bilateral teleoperation by using a virtual visual interface, 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE, 2018.
  • [30] Abut T., Servet S. Motion control in virtual reality based teleoperation system. In Signal Processing and Communications Applications Conference (SIU), 23th IEEE, 2682-2685, 2015.
  • [31] Denavit J., Hartenberg R.S. A kinematic notation for Lower-pair mechanisms based on matrices, ASME Jappl. Mechan, 215-221, 1955.
  • [32] Bingül Z., Küçük S. Robot Tekniği I, Birsen Yayınevi, 104-200, 2005.
  • [33] Abut T. Altı Serbestlik Dereceli Haptik Robot ile Teleoperasyon ve Sistem Dinamiği, Yüksek lisans Tezi, Fırat Üniversitesi, Elazig, 2015.
  • [34] Asada H., Slotine J.J.E. Robot Analysis and Control, Wiley-Interscience Publication, USA, 1986.
  • [35] Kerrow F.J.M. Introduction to Robotics, Addison-Wesley Publishing, USA, 1991.
  • [36] Sreelakshmi M., Subash T. D. Haptic Technology: A comprehensive review on its applications and future prospects. Materials Today: Proceedings, 4:2 4182-4187, 2017.
  • [37] Hazewinkel M. Lagrange equations (in mechanics)”, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4, 2001.
  • [38] Abut T., Servet S. Alli H. Gercek Zamanli Alti Serbestlik Dereceli Haptik Bir Robot ile Sanal Robotun Teleoperasyonu’ UMTS 2015 Bildiri Kitabı, Izmir, 2015b.
  • [39] Ziegler J.B. Nichols N.B. The classic original paper: Optimum settings for automatic controllers”, ASME Transactions, 64 759-768, 1942.
  • [40] Tuong D.N., Seeger M., Peters J. Computed torque control with nonparametric regression models”, Proceedings of the 2008 American Control Conference (ACC), Seattle, 2008.
  • [41] Middleton R.H. Goodwin G.C. Adaptive computed torque control for rigid link manipulators, Systems and Control Letter, 10 9-16, 1988.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tayfun Abut 0000-0003-4646-3345

Servet Soygüder

Yayımlanma Tarihi 24 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 2

Kaynak Göster

APA Abut, T., & Soygüder, S. (2018). Interface Design and Performance Analysis for a Haptic Robot. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 6(2), 553-560.
AMA Abut T, Soygüder S. Interface Design and Performance Analysis for a Haptic Robot. MAUN Fen Bil. Dergi. Aralık 2018;6(2):553-560.
Chicago Abut, Tayfun, ve Servet Soygüder. “Interface Design and Performance Analysis for a Haptic Robot”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6, sy. 2 (Aralık 2018): 553-60.
EndNote Abut T, Soygüder S (01 Aralık 2018) Interface Design and Performance Analysis for a Haptic Robot. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6 2 553–560.
IEEE T. Abut ve S. Soygüder, “Interface Design and Performance Analysis for a Haptic Robot”, MAUN Fen Bil. Dergi., c. 6, sy. 2, ss. 553–560, 2018.
ISNAD Abut, Tayfun - Soygüder, Servet. “Interface Design and Performance Analysis for a Haptic Robot”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 6/2 (Aralık 2018), 553-560.
JAMA Abut T, Soygüder S. Interface Design and Performance Analysis for a Haptic Robot. MAUN Fen Bil. Dergi. 2018;6:553–560.
MLA Abut, Tayfun ve Servet Soygüder. “Interface Design and Performance Analysis for a Haptic Robot”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, c. 6, sy. 2, 2018, ss. 553-60.
Vancouver Abut T, Soygüder S. Interface Design and Performance Analysis for a Haptic Robot. MAUN Fen Bil. Dergi. 2018;6(2):553-60.