Araştırma Makalesi
BibTex RIS Kaynak Göster

Motion Control and Analysis of Delta-type a Parallel Robot

Yıl 2021, Cilt: 9 Sayı: 2, 879 - 885, 26.12.2021
https://doi.org/10.18586/msufbd.1005045

Öz

Parallel robots have natural advantages for many applications thanks to their high rigidity, high accuracy, low inertia of the moving parts and lightness, etc. The goal of this study has performed motion control, the kinematical, and workspace analyses of a Delta-type parallel robot with 3 degrees of freedom (3-DOF). Delta-type parallel actual parameter values were used in the motion control and analyses. Forward and inverse kinematics analysis, as well as workspace analysis of the robot, were carried out. In addition, the motion control of the robot is actualized in Cartesian space. In order for the delta-type parallel robot to have zero oscillation and to have a robust structure against external disturbances, the Sliding Mode Control (SMC) method was preferred. As a result, the motion control, kinematics, and workspace analyses of the delta-type parallel robot were realized and examined.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

2211/C

Teşekkür

This study was supported within the scope of the TÜBİTAK 2211/C Domestic Priority Areas Doctoral Scholarship Program.

Kaynakça

  • Clavel R. A fast robot with parallel geometry. In: Proc. Int. Symposium on Industrial Robots. 91-100. 1988.
  • Clavel R. Conception d’un robot parallel rapide à quatre degrés de liberté (Doctoral dissertation, Ph. D. Thesis 925, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland). 1991.
  • Gosselin C. Determination of the workspace of 6-DOF parallel manipulators, ASME J. Mech. Des. 112 331-336, 1990.
  • Romdhane L. Orientation workspace of fully parallel mechanisms, Eur. J. Mech. 13 541-553, 1994.
  • Boudreau R., Gosselin C.M. The synthesis of planar parallel manipulators with a genetic algorithm, ASME J. Mech. Des. 121 533-537, 1999.
  • Boudreau R., Gosselin C.M. La synthe`se d’une plate forme de Gough-Stewart pour un espace de travail atteignable prescrit, Mech. Mach. Theory 36 327-342, 2001.
  • Kosinska A., Galicki M., Kedzior K. Design and optimization of parameters of Delta-4 parallel manipulator for a given workspace, J. Robot. Syst. 20:9 539-548, 2003.
  • Liu X.J., Wang J., Oh K.K., Kim J. A New Approach to the Design of a DELTA Robot with a Desired Workspace. Journal of Intelligent and Robotic Systems, 39:2 209-225, 2004.
  • Zheng K. Research on intelligent vibration suppression control of high-speed lightweight Delta robot. Journal of Vibration and Control, 10775463211024888, 2021.
  • Zsombor-Murray P.J. Descriptive geometric, kinematic analysis of Clavel’s Delta Robot; Centre of Intelligent Machines, McGill University, 2004.
  • Zsombor-Murray P.J. An improved approach to the kinematics of Clavel’s DELTA robot. Intelligent Machines, McGill University. 2009.
  • Laribi M. A., Romdhane L., Zeghloul S. Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace. Mechanism and machine theory, 42:7 859-870, 2007.
  • Maya M., Castillo E., Lomelí A., González-Galván E., Cárdenas A. Workspace and payload-capacity of a new reconfigurable delta parallel robot. International Journal of Advanced Robotic Systems, 10:1 56, 2013.
  • Riaño C., Peña C.E.S.A.R., Pardo A.L.D.O. Approach in the optimal development of parallel robot for educational applications. In Proceedings of the WSEAS international conference on Recent Advances in Intelligent Control, Modelling and Simulation (ICMS). 145 2014.
  • López M., Castillo E., García G., Bashir A. Delta robot: inverse, direct, and intermediate Jacobians. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220:1 103-109, 2006.
  • Wu M., Mei J., Zhao Y., Niu, W. Vibration reduction of delta robot based on trajectory planning. Mechanism and Machine Theory, 153 104004, 2020.
  • Zheng K., Zhang Q. Comprehensive analysis of the position error and vibration characteristics of Delta robot. Advanced Robotics, 30:20 1322-1340, 2016.
  • Anvari Z., Ataei P., Masouleh M. T. Collision-free workspace and kinetostatic performances of a 4-DOF delta parallel robot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41:2 99, 2019.
  • Préault C., Saafi H., Laribi M.A., Zeghlou S. Optimal design and evaluation of a dexterous 4 DoFs haptic device based on delta architecture. Robotica, 37:7 1267-1288, 2019.
  • Lu C., Miao X., Wang S., Zhang C. Research on Adaptive Robust Control Algorithm for Delta Parallel Robots. In Transactions on Intelligent Welding Manufacturing (pp. 59-68). Springer, Singapore. 2019.
  • Mitsantisuk C., Stapornchaisit S., Niramitvasu N., Ohishi K., Force sensorless control with 3d workspace analysis for haptic devices based on Delta robot, Conference of the IEEE Industrial Electronics Society, IECON, p. 001747-001752, 2015.
  • Shen H., Meng Q., Li J., Deng J., Wu G. Kinematic sensitivity, parameter identification and calibration of a non-fully symmetric parallel Delta robot. Mechanism and Machine Theory, 161 104311, 2021
  • Lu X., Zhao Y., Liu M. Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a Delta parallel robot. Neurocomputing, 283 107-119, 2018.
  • Brinker J., Schmitz M., Takeda Y., Corves B. Dynamic Modeling of Functionally Extended Delta-Like Parallel Robots with Virtual Tree Structures. In ROMANSY 22–Robot Design, Dynamics and Control (p. 171-179). Springer, Cham, 2019.
  • Laryushkin P.A., Erastova K.G., Filippov G.S., Kheylo S.V. Calculation of Delta-Type Mechanisms with Linear Actuators and Different Numbers of Degrees of Freedom.
  • Journal of Machinery Manufacture and Reliability, 48:3 204-210, 2019.
  • Brinker J., Corves B., Takeda Y. On the motion/force transmissibility and constrainability of delta parallel robots. In Computational kinematics. Springer, Cham, p. 340-348, 2018.
  • Boudjedir, C.E., Bouri, M. Boukhetala, D. Model-free Iterative learning control with nonrepetitive trajectories for second-order MIMO nonlinear systems-application to a Delta robot. IEEE Transactions on Industrial Electronics, 68:8 7433-7443, 2020.
  • Wu M., Mei J, Ni J, Hu, W. Trajectory tracking control of delta parallel robot based on disturbance observer. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 235:7 1193-1203, 2021.
  • Utkin V.I. Sliding mode control design principles and applications to electric drives, IEEE transactions on industrial electronics, 40:1 23-36, 1993.
  • Abut T. Position Controller Design and Implementation of Ball and Beam System with SMC and PD Control Methods, Energy Engineering and Control Systems 6(2):120-126,2020.
  • Utkin V. I., Chang H.C. Sliding mode control in electro-mechanical systems, Mathematical Problems in Engineering, 8:4-5 451-473, 2002.
  • Abut T., Soyguder S. Sliding Mode Control of the Haptic-Teleoperation System Based on a Real and Virtual Robot. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE, 1-7, 2019.
  • Hüseyinoğlu M., Abut T. Dynamic model and control of 2-dof robotic arm. European Journal of Technique (EJT), 8:2141-150, 2018.
  • Kim N.I., Lee C.W., Chang P.H. Sliding mode control with perturbation estimation: application to motion control of parallel manipulator. Control Eng Pract 6 1321-1330, 1998.
  • Abut T., Soyguder S. Haptik-Teleoperasyon Sistemleri için PID ve SMC Kontrol Yöntemlerinin Tasarımı ve Bilgisayar Simülasyonu. Journal of New Results in Engineering and Natural Sciences, 12 12-21, 2020.
  • Chen K.Y., Robust optimal adaptive sliding mode control with the disturbance observer for a manipulator robot system. Int J Control, Autom Syst 16:4 1701-1715, 2018.

Delta Tipi Bir Paralel Robotun Hareket Kontrolü ve Analizi

Yıl 2021, Cilt: 9 Sayı: 2, 879 - 885, 26.12.2021
https://doi.org/10.18586/msufbd.1005045

Öz

Paralel robotlar, yüksek rijitlikleri, yüksek doğrulukları, hareketli parçaların düşük ataletleri ve hafiflikleri vb. sayesinde birçok uygulama için doğal avantajlara sahiptir. Bu çalışmanın amacı, 3 serbestlik dereceli (3-DOF) Delta tipi bir paralel robotun hareket kontrolü, kinematik ve çalışma alanı analizlerini gerçekleştirmektir. Hareket kontrolü ve analizlerde delta tipi paralel robotun gerçek parametre değerleri kullanılmıştır. Robotun çalışma alanı analizinin yanı sıra ileri ve ters kinematik analizleri yapılmıştır. Ayrıca robotun hareket kontrolü kartezyen uzayda gerçekleştirilmiştir. Delta tipi paralel robotun sıfır salınım yapması ve dışarıdan gelen bozuculara karşı sağlam bir yapıya sahip olması için Kayan Kipli Kontrol (KKK) yöntemi tercih edilmiştir. Sonuç olarak delta tipi paralel robotun hareket kontrolü, kinematik ve çalışma alanı analizleri gerçekleştirilmiş ve incelenmiştir.

Proje Numarası

2211/C

Kaynakça

  • Clavel R. A fast robot with parallel geometry. In: Proc. Int. Symposium on Industrial Robots. 91-100. 1988.
  • Clavel R. Conception d’un robot parallel rapide à quatre degrés de liberté (Doctoral dissertation, Ph. D. Thesis 925, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland). 1991.
  • Gosselin C. Determination of the workspace of 6-DOF parallel manipulators, ASME J. Mech. Des. 112 331-336, 1990.
  • Romdhane L. Orientation workspace of fully parallel mechanisms, Eur. J. Mech. 13 541-553, 1994.
  • Boudreau R., Gosselin C.M. The synthesis of planar parallel manipulators with a genetic algorithm, ASME J. Mech. Des. 121 533-537, 1999.
  • Boudreau R., Gosselin C.M. La synthe`se d’une plate forme de Gough-Stewart pour un espace de travail atteignable prescrit, Mech. Mach. Theory 36 327-342, 2001.
  • Kosinska A., Galicki M., Kedzior K. Design and optimization of parameters of Delta-4 parallel manipulator for a given workspace, J. Robot. Syst. 20:9 539-548, 2003.
  • Liu X.J., Wang J., Oh K.K., Kim J. A New Approach to the Design of a DELTA Robot with a Desired Workspace. Journal of Intelligent and Robotic Systems, 39:2 209-225, 2004.
  • Zheng K. Research on intelligent vibration suppression control of high-speed lightweight Delta robot. Journal of Vibration and Control, 10775463211024888, 2021.
  • Zsombor-Murray P.J. Descriptive geometric, kinematic analysis of Clavel’s Delta Robot; Centre of Intelligent Machines, McGill University, 2004.
  • Zsombor-Murray P.J. An improved approach to the kinematics of Clavel’s DELTA robot. Intelligent Machines, McGill University. 2009.
  • Laribi M. A., Romdhane L., Zeghloul S. Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace. Mechanism and machine theory, 42:7 859-870, 2007.
  • Maya M., Castillo E., Lomelí A., González-Galván E., Cárdenas A. Workspace and payload-capacity of a new reconfigurable delta parallel robot. International Journal of Advanced Robotic Systems, 10:1 56, 2013.
  • Riaño C., Peña C.E.S.A.R., Pardo A.L.D.O. Approach in the optimal development of parallel robot for educational applications. In Proceedings of the WSEAS international conference on Recent Advances in Intelligent Control, Modelling and Simulation (ICMS). 145 2014.
  • López M., Castillo E., García G., Bashir A. Delta robot: inverse, direct, and intermediate Jacobians. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220:1 103-109, 2006.
  • Wu M., Mei J., Zhao Y., Niu, W. Vibration reduction of delta robot based on trajectory planning. Mechanism and Machine Theory, 153 104004, 2020.
  • Zheng K., Zhang Q. Comprehensive analysis of the position error and vibration characteristics of Delta robot. Advanced Robotics, 30:20 1322-1340, 2016.
  • Anvari Z., Ataei P., Masouleh M. T. Collision-free workspace and kinetostatic performances of a 4-DOF delta parallel robot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41:2 99, 2019.
  • Préault C., Saafi H., Laribi M.A., Zeghlou S. Optimal design and evaluation of a dexterous 4 DoFs haptic device based on delta architecture. Robotica, 37:7 1267-1288, 2019.
  • Lu C., Miao X., Wang S., Zhang C. Research on Adaptive Robust Control Algorithm for Delta Parallel Robots. In Transactions on Intelligent Welding Manufacturing (pp. 59-68). Springer, Singapore. 2019.
  • Mitsantisuk C., Stapornchaisit S., Niramitvasu N., Ohishi K., Force sensorless control with 3d workspace analysis for haptic devices based on Delta robot, Conference of the IEEE Industrial Electronics Society, IECON, p. 001747-001752, 2015.
  • Shen H., Meng Q., Li J., Deng J., Wu G. Kinematic sensitivity, parameter identification and calibration of a non-fully symmetric parallel Delta robot. Mechanism and Machine Theory, 161 104311, 2021
  • Lu X., Zhao Y., Liu M. Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a Delta parallel robot. Neurocomputing, 283 107-119, 2018.
  • Brinker J., Schmitz M., Takeda Y., Corves B. Dynamic Modeling of Functionally Extended Delta-Like Parallel Robots with Virtual Tree Structures. In ROMANSY 22–Robot Design, Dynamics and Control (p. 171-179). Springer, Cham, 2019.
  • Laryushkin P.A., Erastova K.G., Filippov G.S., Kheylo S.V. Calculation of Delta-Type Mechanisms with Linear Actuators and Different Numbers of Degrees of Freedom.
  • Journal of Machinery Manufacture and Reliability, 48:3 204-210, 2019.
  • Brinker J., Corves B., Takeda Y. On the motion/force transmissibility and constrainability of delta parallel robots. In Computational kinematics. Springer, Cham, p. 340-348, 2018.
  • Boudjedir, C.E., Bouri, M. Boukhetala, D. Model-free Iterative learning control with nonrepetitive trajectories for second-order MIMO nonlinear systems-application to a Delta robot. IEEE Transactions on Industrial Electronics, 68:8 7433-7443, 2020.
  • Wu M., Mei J, Ni J, Hu, W. Trajectory tracking control of delta parallel robot based on disturbance observer. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 235:7 1193-1203, 2021.
  • Utkin V.I. Sliding mode control design principles and applications to electric drives, IEEE transactions on industrial electronics, 40:1 23-36, 1993.
  • Abut T. Position Controller Design and Implementation of Ball and Beam System with SMC and PD Control Methods, Energy Engineering and Control Systems 6(2):120-126,2020.
  • Utkin V. I., Chang H.C. Sliding mode control in electro-mechanical systems, Mathematical Problems in Engineering, 8:4-5 451-473, 2002.
  • Abut T., Soyguder S. Sliding Mode Control of the Haptic-Teleoperation System Based on a Real and Virtual Robot. In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE, 1-7, 2019.
  • Hüseyinoğlu M., Abut T. Dynamic model and control of 2-dof robotic arm. European Journal of Technique (EJT), 8:2141-150, 2018.
  • Kim N.I., Lee C.W., Chang P.H. Sliding mode control with perturbation estimation: application to motion control of parallel manipulator. Control Eng Pract 6 1321-1330, 1998.
  • Abut T., Soyguder S. Haptik-Teleoperasyon Sistemleri için PID ve SMC Kontrol Yöntemlerinin Tasarımı ve Bilgisayar Simülasyonu. Journal of New Results in Engineering and Natural Sciences, 12 12-21, 2020.
  • Chen K.Y., Robust optimal adaptive sliding mode control with the disturbance observer for a manipulator robot system. Int J Control, Autom Syst 16:4 1701-1715, 2018.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer), Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Tayfun Abut 0000-0003-4646-3345

Servet Soygüder 0000-0002-8191-6891

Proje Numarası 2211/C
Yayımlanma Tarihi 26 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Abut, T., & Soygüder, S. (2021). Motion Control and Analysis of Delta-type a Parallel Robot. Mus Alparslan University Journal of Science, 9(2), 879-885. https://doi.org/10.18586/msufbd.1005045
AMA Abut T, Soygüder S. Motion Control and Analysis of Delta-type a Parallel Robot. MAUN Fen Bil. Dergi. Aralık 2021;9(2):879-885. doi:10.18586/msufbd.1005045
Chicago Abut, Tayfun, ve Servet Soygüder. “Motion Control and Analysis of Delta-Type a Parallel Robot”. Mus Alparslan University Journal of Science 9, sy. 2 (Aralık 2021): 879-85. https://doi.org/10.18586/msufbd.1005045.
EndNote Abut T, Soygüder S (01 Aralık 2021) Motion Control and Analysis of Delta-type a Parallel Robot. Mus Alparslan University Journal of Science 9 2 879–885.
IEEE T. Abut ve S. Soygüder, “Motion Control and Analysis of Delta-type a Parallel Robot”, MAUN Fen Bil. Dergi., c. 9, sy. 2, ss. 879–885, 2021, doi: 10.18586/msufbd.1005045.
ISNAD Abut, Tayfun - Soygüder, Servet. “Motion Control and Analysis of Delta-Type a Parallel Robot”. Mus Alparslan University Journal of Science 9/2 (Aralık 2021), 879-885. https://doi.org/10.18586/msufbd.1005045.
JAMA Abut T, Soygüder S. Motion Control and Analysis of Delta-type a Parallel Robot. MAUN Fen Bil. Dergi. 2021;9:879–885.
MLA Abut, Tayfun ve Servet Soygüder. “Motion Control and Analysis of Delta-Type a Parallel Robot”. Mus Alparslan University Journal of Science, c. 9, sy. 2, 2021, ss. 879-85, doi:10.18586/msufbd.1005045.
Vancouver Abut T, Soygüder S. Motion Control and Analysis of Delta-type a Parallel Robot. MAUN Fen Bil. Dergi. 2021;9(2):879-85.