Araştırma Makalesi
BibTex RIS Kaynak Göster

Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık

Yıl 2023, Cilt: 11 Sayı: 1, 1 - 6, 30.06.2023
https://doi.org/10.18586/msufbd.1188106

Öz

Bu çalışmanın amacı paranormlu uzaylarda α. dereceden deferred istatistiksel yakınsaklık, paranormlu uzaylarda α. dereceden deferred istatistiksel Cauchy dizisi tanımları ile paranormlu uzaylarda deferred Cesáro yakınsaklık tanımını verip bunlar arasındaki ilişkiyi incelemektir.

Kaynakça

  • Zygmund A. Trigonometric series, Cambridge University Press, Cambridge, 1979.
  • Steinhaus, H. Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum. 2 73-74, 1951.
  • Fast, H. Sur la convergence statistique, Colloquium Mathematicum. 2 241- 24, 1951.
  • Schoenberg, I. J. The integrability of certain functions and related summability methods II, The American Mathematical Monthly. 66 562-563, 1959.
  • Connor, J. The statistical and strong p-Cesaro convergence of sequences, Analysis. 8 47-64, 1988. Fridy, J. A. On statistical convergence, Analysis. 5 301-314, 1985. Altundağ, S., Başarır M. Lacunary statistical convergence in a paranormed space, AIP Conference Proceedings, 1479- 929, 2012.
  • Çolak, R., Bektaş, Ç. A. λ-statistical convergence of order α, Acta Mathematica Scientia Series B. 31 953-959, 2011.
  • Mursaleen M. λ-statistically convergence Mathematica Slovaca. 50 111-115, 2000.
  • Cinar M., Karakas M., Et, M. On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory and Applications. 33 1–11 2013.
  • Şengül, H., Et, M. On lacunary statistical convergence of order α. Acta Mathematica Scientia. 34 473–482, 2014.
  • Wilansky, A. Summability through functional analysis, North Holland, 1984.
  • Niven, I., Zucherman, H. S. and Montgomery H. L. An introduction to the theory of numbers, John Wiley, New York, 1991.
  • Çolak, R. Statistical convergence of order α, Modern methods in analysis and its applications, İndia: Anamaya Pub., New Delhi, 121-129, 2010.
  • Alotaibi, A., Alroqi, A. M. Statistical convergence in a paranormed space, Journal of Inequalities and Applications. 39 1-6, 2012.
  • Ercan, S. On the statistical convergence of order α in paranormed space, Symmetry. 10 483-492, 2018.
  • Maddox, I. Elements of functional analysis, Cambiridge University press, 1970.
  • Agnew, R. P. On deferred Cesaro means, Annals of Mathematics. 33 413-421, 1932.
  • Küçükaslan, M., Yılmaztürk, M. On deferred statistical convergence of sequences, Kyungpook Mathematical Journal. 56 357-366, 2016.
  • Alghamdi, M. A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstract and Applied Analysis. Art. ID 264520. 1-5 2013.

Deferred Statistical Convergence of Order α in Paranormed Space

Yıl 2023, Cilt: 11 Sayı: 1, 1 - 6, 30.06.2023
https://doi.org/10.18586/msufbd.1188106

Öz

This study aims to define deferred statistical convergence of α. order in paranorm spaces, the definitions of deferred statistical Cauchy convergence of α. order in paranorm spaces and the definition of diferred Cesáro in paranorm spaces and to investigate the relation among these.

Kaynakça

  • Zygmund A. Trigonometric series, Cambridge University Press, Cambridge, 1979.
  • Steinhaus, H. Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum. 2 73-74, 1951.
  • Fast, H. Sur la convergence statistique, Colloquium Mathematicum. 2 241- 24, 1951.
  • Schoenberg, I. J. The integrability of certain functions and related summability methods II, The American Mathematical Monthly. 66 562-563, 1959.
  • Connor, J. The statistical and strong p-Cesaro convergence of sequences, Analysis. 8 47-64, 1988. Fridy, J. A. On statistical convergence, Analysis. 5 301-314, 1985. Altundağ, S., Başarır M. Lacunary statistical convergence in a paranormed space, AIP Conference Proceedings, 1479- 929, 2012.
  • Çolak, R., Bektaş, Ç. A. λ-statistical convergence of order α, Acta Mathematica Scientia Series B. 31 953-959, 2011.
  • Mursaleen M. λ-statistically convergence Mathematica Slovaca. 50 111-115, 2000.
  • Cinar M., Karakas M., Et, M. On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory and Applications. 33 1–11 2013.
  • Şengül, H., Et, M. On lacunary statistical convergence of order α. Acta Mathematica Scientia. 34 473–482, 2014.
  • Wilansky, A. Summability through functional analysis, North Holland, 1984.
  • Niven, I., Zucherman, H. S. and Montgomery H. L. An introduction to the theory of numbers, John Wiley, New York, 1991.
  • Çolak, R. Statistical convergence of order α, Modern methods in analysis and its applications, İndia: Anamaya Pub., New Delhi, 121-129, 2010.
  • Alotaibi, A., Alroqi, A. M. Statistical convergence in a paranormed space, Journal of Inequalities and Applications. 39 1-6, 2012.
  • Ercan, S. On the statistical convergence of order α in paranormed space, Symmetry. 10 483-492, 2018.
  • Maddox, I. Elements of functional analysis, Cambiridge University press, 1970.
  • Agnew, R. P. On deferred Cesaro means, Annals of Mathematics. 33 413-421, 1932.
  • Küçükaslan, M., Yılmaztürk, M. On deferred statistical convergence of sequences, Kyungpook Mathematical Journal. 56 357-366, 2016.
  • Alghamdi, M. A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstract and Applied Analysis. Art. ID 264520. 1-5 2013.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Haşmet Kapşigay 0000-0003-1700-3470

Muhammed Çınar 0000-0002-0958-0705

Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 1

Kaynak Göster

APA Kapşigay, H., & Çınar, M. (2023). Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. Mus Alparslan University Journal of Science, 11(1), 1-6. https://doi.org/10.18586/msufbd.1188106
AMA Kapşigay H, Çınar M. Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. MAUN Fen Bil. Dergi. Haziran 2023;11(1):1-6. doi:10.18586/msufbd.1188106
Chicago Kapşigay, Haşmet, ve Muhammed Çınar. “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”. Mus Alparslan University Journal of Science 11, sy. 1 (Haziran 2023): 1-6. https://doi.org/10.18586/msufbd.1188106.
EndNote Kapşigay H, Çınar M (01 Haziran 2023) Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. Mus Alparslan University Journal of Science 11 1 1–6.
IEEE H. Kapşigay ve M. Çınar, “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”, MAUN Fen Bil. Dergi., c. 11, sy. 1, ss. 1–6, 2023, doi: 10.18586/msufbd.1188106.
ISNAD Kapşigay, Haşmet - Çınar, Muhammed. “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”. Mus Alparslan University Journal of Science 11/1 (Haziran 2023), 1-6. https://doi.org/10.18586/msufbd.1188106.
JAMA Kapşigay H, Çınar M. Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. MAUN Fen Bil. Dergi. 2023;11:1–6.
MLA Kapşigay, Haşmet ve Muhammed Çınar. “Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık”. Mus Alparslan University Journal of Science, c. 11, sy. 1, 2023, ss. 1-6, doi:10.18586/msufbd.1188106.
Vancouver Kapşigay H, Çınar M. Paranormlu Uzaylarda α. Dereceden Deferred İstatistiksel Yakınsaklık. MAUN Fen Bil. Dergi. 2023;11(1):1-6.