Araştırma Makalesi
BibTex RIS Kaynak Göster

Isothermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in oat flour

Yıl 2024, Cilt: 12 Sayı: 2, 72 - 77, 30.12.2024
https://doi.org/10.18586/msufbd.1502065

Öz

Bu çalışma, Salmonella'nın ısıl işlemin sırasında yulaf ununda hayatta kalma ve ısıl toleransını (D- ve z-değerleri) patojenik etki göstermeyen potansiyel müdavini olan Enterococcus faecium NRRL B-2354 (E. faecium) ile birlikte belirlemeyi amaçlamıştır. Yulaf ununun su aktivite (aw) değeri , nem kontrollü bir ortamda 0.40 olarak ayarlanarak S. Enteritidis PT30 ve E. faecium ile eşit şekilde inoküle (108-9 CFU/g) edilmiştir. Yulaf unu örnekleri (1 ± 0.1 g) daha sonra plastik torbalarda vakumlanarak paketlenmiş ve bakteriyel hayatta kalmayı değerlendirmek için 75, 80 ve 85°C’de sıcak su banyosunda ısıl işleme tabi tutulmuştur. S. Enteritidis PT30 ve E. faecium'un hayatta kalma eğrileri, iki ana model (Log-lineer ve Weibull modeli) kullanılarak analiz edilmiştir ve mikroorganizmaların hayatta kalma eğrilerinin birinci dereceden kinetik izlediği ortaya çıkmıştır. S. Enteritidis PT30 ve E. faecium'un yulaf unundaki D75C, D80C ve D85C değerleri sırasıyla 16.08 ± 1.36°C'den 2.27 ± 0.35 dakikaya ve 23.61 ± 1.39'dan 3.87 ± 0.42 dakikaya düşmüştür ve karşılık gelen z-değerleri sırasıyla 13.4 ± 0.37 ve 12.1 ± 0.41°C olarak bulunmuştur. Bu araştırmadan elde edilen D- ve z-değerleri, yulaf ununun mikrobiyel güvenliğini sağlamak için ısıl işlemin doğrulanmasında kullanılabilir.

Kaynakça

  • [1] Centers for Disease Control (CDC), 2023. Multistate Salmonella outbreak linked to flour. https://www.cdc.gov/salmonella/infantis-03-23/index.html
  • [2] Blessington, T., Theofel, C. G., & Harris, L. J. (2013). A dry-inoculation method for nut kernels. Food Microbiology, 33(2), 292–297. https://doi.org/10.1016/j.fm.2012.09
  • [3] Centers for Disease Control and Prevention (CDC), 2016. Multistate outbreak of Salmonella Montevideo and Salmonella Senftenberg infections linked to Wonderful Pistachios (final update). https://www.cdc.gov/salmonella/montevideo-03-16/ind ex.html.
  • [4] Centers for Disease Control and Prevention (CDC), 2014. Multistate outbreak of human Salmonella Enteritidis infections linked to Turkish pine nuts (Final update). https://www.cdc.gov/salmonella/2011/pine-nuts-11-17-2011.html.
  • [5] Centers for Disease Control and Prevention (CDC), 2009a. Multistate outbreak of Salmonella infections linked to pistachio nuts (Final Update). https://www.cdc.gov/ salmonella/2009/pistachio-nuts-4-14-2009.html
  • [6] Centers for Disease Control and Prevention (CDC), 2010. Multistate outbreak of human Salmonella Montevideo infections (final update). https://www.cdc.gov/mmwr/ preview/mmwrhtml/mm5950a3.htm
  • [7] Centers for Disease Control and Prevention (CDC), 2009b. Multistate outbreak of Salmonella Typhimurium infections linked to peanut butter, 2008-2009 (final update). https://www.cdc.gov/salmonella/2009/peanut-butter-2008-2009.html.
  • [8] Centers for Disease Control and Prevention (CDC), 2008a. Multistate outbreak of human Salmonella infections caused by contaminated dry dog food–United States, 2006- 2007. MMWR Morbidity and Mortality Weekly Report , 57, 521–524.
  • [9] Centers for Disease Control and Prevention (CDC), 2008b. Multistate outbreak of Salmonella agona infections linked to rice and wheat puff cereal (final update). http s://www.cdc.gov/salmonella/2008/rice-wheat-puff-cereal-5-13-2008.html.
  • [10] Food and Drug Administration, 2015. Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/elimination of Microbial Hazards on Fresh and Fresh-cut Produce: Chapter VII. The Use of Indicators and Surrogate Microorganisms for the Evaluation of Pathogens in Fresh and Fresh-cut Produce.
  • [11] Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584-602.
  • [12] Food and Drug Administration, 2015b. Food Safety Modernization Act (FSMA) Final Rule for Preventive Controls for Human Food.
  • [13] ABC, 2014. Guidelines for Using Enterococcus Faecium NRRL B-2354 as a Surrogate Microorganism in Almond Process Validation.
  • [14] Bianchini, A., Stratton, J., Weier, S., Hartter, T., Plattner, B., Rokey, G., et al. (2012). Validation of extrusion as a killing step for Enterococcus faecium in a balanced carbohydrate-protein meal by using a response surface design. Journal of Food Protection, 75(9), 1646–1653. https://doi.org/10.4315/0362-028x.jfp-12-085.
  • [15] Jeong, S., Marks, B. P., & Ryser, E. T. (2011). Quantifying the performance of Pediococcus sp.(NRRL B-2354: Enterococcus faecium) as a nonpathogenic surrogate for Salmonella Enteritidis PT30 during moist-air convection heating of almonds. Journal of Food protection, 74(4), 603-609.
  • [16] Bingol, G., Yang, J. H., Brandl, M. T., Pan, Z. L., Wang, H., & McHugh, T. H. (2011). Infrared pasteurization of raw almonds. Journal of Food Engineering, 104(3), 387–393. https://doi.org/10.1016/j.jfoodeng.2010.12.034
  • [17] Ozturk, S., Kong, F., & Singh, R. K. (2020). Evaluation of Enterococcus faecium NRRL B-2354 as a potential surrogate of Salmonella in packaged paprika, white pepper and cumin powder during radio frequency heating. Food Control, 108, 106833.
  • [18] Liu, S., Rojas, R.V., Gray, P., Yang, R., Zhu, M.J., Tang, J., 2018a. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: influence of water activity at high temperatures. Food Microbiology. 74, 92–99.
  • [19] Liu, S.X., Ozturk, S., Xu, J., Kong, F.B., Gray, P., Zhu, M.J., Sablani, S.S., Tang, J.M., 2018b. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering, 217, 68–74.
  • [20] Li, C., Huang, L., & Chen, J. (2014). Comparative study of thermal inactivation kinetics of 403 Salmonella spp. in peanut butter and peanut butter spread. Food Control, 45, 143-149. https://doi.org/10.1016/j.foodcont.2014.04.028
  • [21] Harris, L. J., Uesugi, A. R., Abd, S. J., & McCarthy, K. L. (2012). Survival of Salmonella Enteritidis PT 30 on inoculated almond kernels in hot water treatments. Food Research International, 45(2), 1093–1098. https://doi.org/10.1016/j.foodres.2011. 03.048.
  • [22] Ozturk, S., Liu, S., Xu, J., Tang, J., Chen, J., Singh, R. K., & Kong, F. (2019). Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. Lwt, 111, 782-789.
  • [23] Peleg, M., 2006. Advanced Quantitative Microbiology for Foods and Biosystems: Models for Predicting Growth and Inactivation. CRC Press.
  • [24] Motulsky, H., & Cristopoulos, A. (2004). Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. Oxford University Press.
  • [25] Huang, L. (2017). IPMP Global Fit - A one-step direct data analysis tool for predictive 392 microbiology. International Journal of Food Microbiology, 262, 38–48. 393 https://doi.org/10.1016/j.ijfoodmicro.2017.09.010
  • [26] Smith, D.F., 2014. Modeling the Effect of Water Activity on Thermal Resistance of Salmonella in Wheat Flour. Michigan State University.
  • [27] Syamaladevi, R.M., et al., 2016. Water activity change at elevated temperatures and thermal resistance of Salmonella in all-purpose wheat flour and peanut butter. Food Research International, 81, 163e170.
  • [28] Ceylan, E., Bautista, D.A., 2015. Evaluating Pediococcus acidilactici and Enterococcus faecium NRRL B-2354 as thermal surrogate microorganisms for Salmonella for in-plant validation studies of low-moisture pet food products. Journal of Food Protection, 78, 934–939.
  • [29] Laroche, C., Fine, F., Gervais, P., 2005. Water activity affects heat resistance of microorganisms in food powders. International Journal of Food Microbiology. 97, 307–315.
  • [30] Kataoka, A., Enache, E., Black, D.G., Elliott, P.H., Napier, C.D., Podolak, R., Hayman, M.M., 2014. Survival of Salmonella Tennessee, Salmonella Typhimurium DT104, and Enterococcus faecium in peanut paste formulations at two different levels of water activity and fat. Journal of Food Protection, 77, 1252–1259.
  • [31] Taylor, M. H., Tsai, H. C., Rasco, B., Tang, J., & Zhu, M. J. (2018). Stability of Listeria monocytogenes in wheat flour during extended storage and isothermal treatment. Food Control, 91, 434-439.
  • [32] Goepfert, J.M., Biggie, R.A., 1968. Heat resistance of Salmonella Typhimurium and Salmonella Senftenberg 775W in milk chocolate. Applied Microbiology, 16, 1939–1940.
  • [33] Ng, H., Bayne, H.G., Garibaldi, J.A., 1969. Heat resistance of Salmonella: the uniqueness of Salmonella senftenberg 775W. Applied Microbiology, 17, 78–82.
  • [34] Rolfe, M.D., Rice, C.J., Lucchini, S., Pin, C., Thompson, A., Cameron, A.D.S., Alston, M., Stringer, M.F., Betts, R.P., Baranyi, J., Peck, M.W., Hinton, J.C.D., 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. International Journal of Bacteriology, 194, 686–701.
  • [35] Mogollon, M.A., Marks, B.P., Booren, A.M., Orta-Ramirez, A., Ryser, E.T., 2009. Effect of beef product physical structure on Salmonella thermal inactivation. Journal of Food Science, 74, M347–M351.
  • [36] Juneja, V.K., Eblen, B.S., 2000. Heat inactivation of Salmonella Typhimurium DT104 in beef as affected by fat content. Letters in Applied Microbiology, 30, 461–467.
  • [37] He, Y., Li, Y., Salazar, J.K., Yang, J., Tortorello, M.L., Zhang, W., 2013. Increased water activity reduces the thermal resistance of Salmonella enterica in peanut butter. Applied and Environmental Microbiology, 79, 4763–4767.
  • [38] Lima, L.J., van der Velpen, V., Wolkers-Rooijackers, J., Kamphuis, H.J., Zwietering, M.H., Nout, M.J., 2012. Microbiota dynamics and diversity at different stages of industrial processing of cocoa beans into cocoa powder. Applied and Environmental Microbiology, 78, 2904–2913.
  • [39] Kopit, L.M., Kim, E.B., Siezen, R.J., Harris, L.J., Marco, M.L., 2014. Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for Use in thermal process validation. Journal of Applied & Environmental Microbiology, 80, 1899–1909.
  • [40] Tsai, H. C., Ballom, K. F., Xia, S., Tang, J., Marks, B. P., & Zhu, M. J. (2019). Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing. Food Microbiology, 82, 135-141.
  • [41] Rachon, G., Penaloza, W., Gibbs, P.A., 2016. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods. International Journal of Food Microbiology, 231, 16–25.

Yulaf ununda Salmonella ve Enterococcus faecium NRRL B-2354'ün izotermal inaktivasyon kinetiği

Yıl 2024, Cilt: 12 Sayı: 2, 72 - 77, 30.12.2024
https://doi.org/10.18586/msufbd.1502065

Öz

Bu çalışma, Salmonella'nın ısıl işlemin sırasında yulaf ununda hayatta kalma ve ısıl toleransını (D- ve z-değerleri) patojenik etki göstermeyen potansiyel müdavini olan Enterococcus faecium NRRL B-2354 (E. faecium) ile birlikte belirlemeyi amaçlamıştır. Yulaf ununun su aktivite (aw) değeri , nem kontrollü bir ortamda 0.40 olarak ayarlanarak S. Enteritidis PT30 ve E. faecium ile eşit şekilde inoküle (108-9 CFU/g) edilmiştir. Yulaf unu örnekleri (1 ± 0.1 g) daha sonra plastik torbalarda vakumlanarak paketlenmiş ve bakteriyel hayatta kalmayı değerlendirmek için 75, 80 ve 85°C’de sıcak su banyosunda ısıl işleme tabi tutulmuştur. S. Enteritidis PT30 ve E. faecium'un hayatta kalma eğrileri, iki ana model (Log-lineer ve Weibull modeli) kullanılarak analiz edilmiştir ve mikroorganizmaların hayatta kalma eğrilerinin birinci dereceden kinetik izlediği ortaya çıkmıştır. S. Enteritidis PT30 ve E. faecium'un yulaf unundaki D75C, D80C ve D85C değerleri sırasıyla 16.08 ± 1.36°C'den 2.27 ± 0.35 dakikaya ve 23.61 ± 1.39'dan 3.87 ± 0.42 dakikaya düşmüştür ve karşılık gelen z-değerleri sırasıyla 13.4 ± 0.37 ve 12.1 ± 0.41°C olarak bulunmuştur. Bu araştırmadan elde edilen D- ve z-değerleri, yulaf ununun mikrobiyel güvenliğini sağlamak için ısıl işlemin doğrulanmasında kullanılabilir.

Kaynakça

  • [1] Centers for Disease Control (CDC), 2023. Multistate Salmonella outbreak linked to flour. https://www.cdc.gov/salmonella/infantis-03-23/index.html
  • [2] Blessington, T., Theofel, C. G., & Harris, L. J. (2013). A dry-inoculation method for nut kernels. Food Microbiology, 33(2), 292–297. https://doi.org/10.1016/j.fm.2012.09
  • [3] Centers for Disease Control and Prevention (CDC), 2016. Multistate outbreak of Salmonella Montevideo and Salmonella Senftenberg infections linked to Wonderful Pistachios (final update). https://www.cdc.gov/salmonella/montevideo-03-16/ind ex.html.
  • [4] Centers for Disease Control and Prevention (CDC), 2014. Multistate outbreak of human Salmonella Enteritidis infections linked to Turkish pine nuts (Final update). https://www.cdc.gov/salmonella/2011/pine-nuts-11-17-2011.html.
  • [5] Centers for Disease Control and Prevention (CDC), 2009a. Multistate outbreak of Salmonella infections linked to pistachio nuts (Final Update). https://www.cdc.gov/ salmonella/2009/pistachio-nuts-4-14-2009.html
  • [6] Centers for Disease Control and Prevention (CDC), 2010. Multistate outbreak of human Salmonella Montevideo infections (final update). https://www.cdc.gov/mmwr/ preview/mmwrhtml/mm5950a3.htm
  • [7] Centers for Disease Control and Prevention (CDC), 2009b. Multistate outbreak of Salmonella Typhimurium infections linked to peanut butter, 2008-2009 (final update). https://www.cdc.gov/salmonella/2009/peanut-butter-2008-2009.html.
  • [8] Centers for Disease Control and Prevention (CDC), 2008a. Multistate outbreak of human Salmonella infections caused by contaminated dry dog food–United States, 2006- 2007. MMWR Morbidity and Mortality Weekly Report , 57, 521–524.
  • [9] Centers for Disease Control and Prevention (CDC), 2008b. Multistate outbreak of Salmonella agona infections linked to rice and wheat puff cereal (final update). http s://www.cdc.gov/salmonella/2008/rice-wheat-puff-cereal-5-13-2008.html.
  • [10] Food and Drug Administration, 2015. Analysis and Evaluation of Preventive Control Measures for the Control and Reduction/elimination of Microbial Hazards on Fresh and Fresh-cut Produce: Chapter VII. The Use of Indicators and Surrogate Microorganisms for the Evaluation of Pathogens in Fresh and Fresh-cut Produce.
  • [11] Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584-602.
  • [12] Food and Drug Administration, 2015b. Food Safety Modernization Act (FSMA) Final Rule for Preventive Controls for Human Food.
  • [13] ABC, 2014. Guidelines for Using Enterococcus Faecium NRRL B-2354 as a Surrogate Microorganism in Almond Process Validation.
  • [14] Bianchini, A., Stratton, J., Weier, S., Hartter, T., Plattner, B., Rokey, G., et al. (2012). Validation of extrusion as a killing step for Enterococcus faecium in a balanced carbohydrate-protein meal by using a response surface design. Journal of Food Protection, 75(9), 1646–1653. https://doi.org/10.4315/0362-028x.jfp-12-085.
  • [15] Jeong, S., Marks, B. P., & Ryser, E. T. (2011). Quantifying the performance of Pediococcus sp.(NRRL B-2354: Enterococcus faecium) as a nonpathogenic surrogate for Salmonella Enteritidis PT30 during moist-air convection heating of almonds. Journal of Food protection, 74(4), 603-609.
  • [16] Bingol, G., Yang, J. H., Brandl, M. T., Pan, Z. L., Wang, H., & McHugh, T. H. (2011). Infrared pasteurization of raw almonds. Journal of Food Engineering, 104(3), 387–393. https://doi.org/10.1016/j.jfoodeng.2010.12.034
  • [17] Ozturk, S., Kong, F., & Singh, R. K. (2020). Evaluation of Enterococcus faecium NRRL B-2354 as a potential surrogate of Salmonella in packaged paprika, white pepper and cumin powder during radio frequency heating. Food Control, 108, 106833.
  • [18] Liu, S., Rojas, R.V., Gray, P., Yang, R., Zhu, M.J., Tang, J., 2018a. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: influence of water activity at high temperatures. Food Microbiology. 74, 92–99.
  • [19] Liu, S.X., Ozturk, S., Xu, J., Kong, F.B., Gray, P., Zhu, M.J., Sablani, S.S., Tang, J.M., 2018b. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering, 217, 68–74.
  • [20] Li, C., Huang, L., & Chen, J. (2014). Comparative study of thermal inactivation kinetics of 403 Salmonella spp. in peanut butter and peanut butter spread. Food Control, 45, 143-149. https://doi.org/10.1016/j.foodcont.2014.04.028
  • [21] Harris, L. J., Uesugi, A. R., Abd, S. J., & McCarthy, K. L. (2012). Survival of Salmonella Enteritidis PT 30 on inoculated almond kernels in hot water treatments. Food Research International, 45(2), 1093–1098. https://doi.org/10.1016/j.foodres.2011. 03.048.
  • [22] Ozturk, S., Liu, S., Xu, J., Tang, J., Chen, J., Singh, R. K., & Kong, F. (2019). Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. Lwt, 111, 782-789.
  • [23] Peleg, M., 2006. Advanced Quantitative Microbiology for Foods and Biosystems: Models for Predicting Growth and Inactivation. CRC Press.
  • [24] Motulsky, H., & Cristopoulos, A. (2004). Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. Oxford University Press.
  • [25] Huang, L. (2017). IPMP Global Fit - A one-step direct data analysis tool for predictive 392 microbiology. International Journal of Food Microbiology, 262, 38–48. 393 https://doi.org/10.1016/j.ijfoodmicro.2017.09.010
  • [26] Smith, D.F., 2014. Modeling the Effect of Water Activity on Thermal Resistance of Salmonella in Wheat Flour. Michigan State University.
  • [27] Syamaladevi, R.M., et al., 2016. Water activity change at elevated temperatures and thermal resistance of Salmonella in all-purpose wheat flour and peanut butter. Food Research International, 81, 163e170.
  • [28] Ceylan, E., Bautista, D.A., 2015. Evaluating Pediococcus acidilactici and Enterococcus faecium NRRL B-2354 as thermal surrogate microorganisms for Salmonella for in-plant validation studies of low-moisture pet food products. Journal of Food Protection, 78, 934–939.
  • [29] Laroche, C., Fine, F., Gervais, P., 2005. Water activity affects heat resistance of microorganisms in food powders. International Journal of Food Microbiology. 97, 307–315.
  • [30] Kataoka, A., Enache, E., Black, D.G., Elliott, P.H., Napier, C.D., Podolak, R., Hayman, M.M., 2014. Survival of Salmonella Tennessee, Salmonella Typhimurium DT104, and Enterococcus faecium in peanut paste formulations at two different levels of water activity and fat. Journal of Food Protection, 77, 1252–1259.
  • [31] Taylor, M. H., Tsai, H. C., Rasco, B., Tang, J., & Zhu, M. J. (2018). Stability of Listeria monocytogenes in wheat flour during extended storage and isothermal treatment. Food Control, 91, 434-439.
  • [32] Goepfert, J.M., Biggie, R.A., 1968. Heat resistance of Salmonella Typhimurium and Salmonella Senftenberg 775W in milk chocolate. Applied Microbiology, 16, 1939–1940.
  • [33] Ng, H., Bayne, H.G., Garibaldi, J.A., 1969. Heat resistance of Salmonella: the uniqueness of Salmonella senftenberg 775W. Applied Microbiology, 17, 78–82.
  • [34] Rolfe, M.D., Rice, C.J., Lucchini, S., Pin, C., Thompson, A., Cameron, A.D.S., Alston, M., Stringer, M.F., Betts, R.P., Baranyi, J., Peck, M.W., Hinton, J.C.D., 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. International Journal of Bacteriology, 194, 686–701.
  • [35] Mogollon, M.A., Marks, B.P., Booren, A.M., Orta-Ramirez, A., Ryser, E.T., 2009. Effect of beef product physical structure on Salmonella thermal inactivation. Journal of Food Science, 74, M347–M351.
  • [36] Juneja, V.K., Eblen, B.S., 2000. Heat inactivation of Salmonella Typhimurium DT104 in beef as affected by fat content. Letters in Applied Microbiology, 30, 461–467.
  • [37] He, Y., Li, Y., Salazar, J.K., Yang, J., Tortorello, M.L., Zhang, W., 2013. Increased water activity reduces the thermal resistance of Salmonella enterica in peanut butter. Applied and Environmental Microbiology, 79, 4763–4767.
  • [38] Lima, L.J., van der Velpen, V., Wolkers-Rooijackers, J., Kamphuis, H.J., Zwietering, M.H., Nout, M.J., 2012. Microbiota dynamics and diversity at different stages of industrial processing of cocoa beans into cocoa powder. Applied and Environmental Microbiology, 78, 2904–2913.
  • [39] Kopit, L.M., Kim, E.B., Siezen, R.J., Harris, L.J., Marco, M.L., 2014. Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for Use in thermal process validation. Journal of Applied & Environmental Microbiology, 80, 1899–1909.
  • [40] Tsai, H. C., Ballom, K. F., Xia, S., Tang, J., Marks, B. P., & Zhu, M. J. (2019). Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing. Food Microbiology, 82, 135-141.
  • [41] Rachon, G., Penaloza, W., Gibbs, P.A., 2016. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods. International Journal of Food Microbiology, 231, 16–25.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikrobiyoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Samet Öztürk 0000-0003-3155-093X

Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 16 Haziran 2024
Kabul Tarihi 26 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Öztürk, S. (2024). Isothermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in oat flour. Mus Alparslan University Journal of Science, 12(2), 72-77. https://doi.org/10.18586/msufbd.1502065
AMA Öztürk S. Isothermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in oat flour. MAUN Fen Bil. Dergi. Aralık 2024;12(2):72-77. doi:10.18586/msufbd.1502065
Chicago Öztürk, Samet. “Isothermal Inactivation Kinetics of Salmonella and Enterococcus Faecium NRRL B-2354 in Oat Flour”. Mus Alparslan University Journal of Science 12, sy. 2 (Aralık 2024): 72-77. https://doi.org/10.18586/msufbd.1502065.
EndNote Öztürk S (01 Aralık 2024) Isothermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in oat flour. Mus Alparslan University Journal of Science 12 2 72–77.
IEEE S. Öztürk, “Isothermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in oat flour”, MAUN Fen Bil. Dergi., c. 12, sy. 2, ss. 72–77, 2024, doi: 10.18586/msufbd.1502065.
ISNAD Öztürk, Samet. “Isothermal Inactivation Kinetics of Salmonella and Enterococcus Faecium NRRL B-2354 in Oat Flour”. Mus Alparslan University Journal of Science 12/2 (Aralık 2024), 72-77. https://doi.org/10.18586/msufbd.1502065.
JAMA Öztürk S. Isothermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in oat flour. MAUN Fen Bil. Dergi. 2024;12:72–77.
MLA Öztürk, Samet. “Isothermal Inactivation Kinetics of Salmonella and Enterococcus Faecium NRRL B-2354 in Oat Flour”. Mus Alparslan University Journal of Science, c. 12, sy. 2, 2024, ss. 72-77, doi:10.18586/msufbd.1502065.
Vancouver Öztürk S. Isothermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in oat flour. MAUN Fen Bil. Dergi. 2024;12(2):72-7.