Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 12 Sayı: 2, 184 - 197
https://doi.org/10.18586/msufbd.1561443

Öz

Kaynakça

  • [1] Jaseena K.U., Kovoor B.C., Deterministic weather forecasting models based on intelligent predictors: A survey, Journal of King Saud University-Computer and Information Sciences. 34(6): 3393-3412, 2022.
  • [2] Xu M., Yu L., Liang K., Vihma T., Bozkurt D., Hu X., Yang Q., Dominant role of vertical air flows in the unprecedented warming on the Antarctic Peninsula in February 2020, Communications Earth and Environment. 2(1), 2021.
  • [3] Van Haaren R., Fthenakis V.. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State, Renewable and sustainable energy reviews. 15(7): 3332-3340, 2011.
  • [4] Jing H., Li W., Su Y., Zhao W., Zhang J., Qiao M., Liu Q., Numerical study of wind characteristics at a long-span bridge site in mountain valley, Physics of Fluids. 36(3), 2024.
  • [5] Young I.R., Kirezci E., Ribal A., The global wind resource observed by scatterometer, Remote Sensing. 12(18), 2020.
  • [6] Amini M., Memari A.M., Review of literature on performance of coastal residential buildings under hurricane conditions and lessons learned, Journal of performance of constructed facilities. 34(6), 2020.
  • [7] Ma L., Bocchini P., Christou V., Fragility models of electrical conductors in power transmission networks subjected to hurricanes, Structural Safety. 82, 2020.
  • [8] Sibanda S., Workneh T.S., Potential causes of postharvest losses, low-cost cooling technology for fresh produce farmers in Sub-Sahara Africa, African Journal of Agricultural Research. 16(5): 553-566, 2020.
  • [9] Brune S., Keller J.D., Wahl S., Evaluation of wind speed estimates in reanalyses for wind energy applications, Advances in Science and Research. 18: 115-126, 2021.
  • [10] Gliksman D., Averbeck P., Becker N., Gardiner B., Goldberg V., Grieger J., Franzke C.L., Wind and storm damage: From Meteorology to Impacts, Natural Hazards and Earth System Sciences Discussions. 1-47, 2022.
  • [11] Neo E.X., Hasikin K., Lai K.W., Mokhtar M.I., Azizan M.M., Hizaddin H.F., Razak S.A., Artificial intelligence-assisted air quality monitoring for smart city management, PeerJ Computer Science. 9, 2023.
  • [12] Dranka G.G., Ferreira P., Vaz A.I.F., Integrating supply and demand-side management in renewable-based energy systems, Energy. 232, 2021.
  • [13] Rosenow J., Lindner M., Scheiderer J., Advanced flight planning and the benefit of in-flight aircraft trajectory optimization, Sustainability.; 13(3), 2021.
  • [14] Gultepe I., A review on weather impact on aviation operations: Visibility, wind, precipitation, icing, Journal of Airline Operations and Aviation Management. 2(1): 1-44, 2023.
  • [15] De Perez E.C., Berse K.B., Depante L.A.C., Easton-Calabria E., Evidente E.P.R., Ezike T., Van Sant C., Learning from the past in moving to the future: Invest in communication and response to weather early warnings to reduce death and damage, Climate Risk Management. 38, 2022.
  • [16] Jovanovic N., Pereira L.S., Paredes P., Pôças I., Cantore V., Todorovic M., A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods, Agricultural water management. 239, 2020.
  • [17] Giovannini L., Ferrero E., Karl T., Rotach M.W., Staquet C., Trini Castelli S., Zardi D., Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modelling, Atmosphere. 11(6), 2020.
  • [18] Malik P., Gehlot A., Singh R., Gupta L.R., Thakur A.K., A review on ANN based model for solar radiation and wind speed prediction with real-time data, Archives of Computational Methods in Engineering. 29(5): 3183-3201, 2022.
  • [19] Aggarwal D., Sharma D., Saxena A.B., Role of AI in cyber security through Anomaly detection and Predictive analysis, Journal of Informatics Education and Research. 3(2), 2023.
  • [20] Kosovic I.N., Mastelic T., Ivankovic D., Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis, Journal of cleaner production. 266, 2020.
  • [21] Dewitte S., Cornelis J.P., Müller R., Munteanu A., Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction, Remote Sensing. 13(16), 2021.
  • [22] Subbiah S.S., Paramasivan S.K., Arockiasamy K., Senthivel S., Thangavel M., Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features, Intelligent Automation and Soft Computing. 35(3), 2023.
  • [23] Chen P., Han D., Effective wind speed estimation study of the wind turbine based on deep learning, Energy. 247, 2022.
  • [24] Chen X., Yu R., Ullah S., Wu D., Li Z., Li Q., Zhang Y., A novel loss function of deep learning in wind speed forecasting, Energy. 238, 2022.
  • [25] Han Y., Mi L., Shen L., Cai C.S., Liu Y., Li K., Xu G., A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting, Applied Energy. 312, 2022.
  • [26] Khodayar M., Saffari M., Williams M., Jalali M.J., Interval deep learning architecture with rough pattern recognition and fuzzy inference for short-term wind speed forecasting, Energy. 254, 2022.
  • [27] Hao Y., Yang W., Yin K., Novel wind speed forecasting model based on a deep learning combined strategy in urban energy systems, Expert Systems with Applications. 219, 2023.
  • [28] Indian Cities Weather 2010-2024: Dive In!. https://www.kaggle.com/datasets/mukeshdevrath007/indian-5000-cities-weather-data (Erişim tarihi: 15.04.2024)
  • [29] Karabadji N.E.I., Korba A.A., Assi A., Seridi H., Aridhi S., Dhifli W., Accuracy and diversity-aware multi-objective approach for random forest construction, Expert Systems with Applications. 225, 2023.
  • [30] Bansal M., Goyal A., Choudhary A., A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning, Decision Analytics Journal. 3, 2022.
  • [31] Canbay, Y., Adsiz, S., Canbay, P., Privacy-Preserving Transfer Learning Framework for Kidney Disease Detection. Applied Sciences, 14(19), 8629, 2024.
  • [32] Kaya, M., Bilge, H. Ş., Benzerlik Tabanlı Öğrenme Kullanarak Histopatolojik Görüntülerin Sınıflandırılması. EMO Bilimsel Dergi, 14(2): 49-58, 2024.
  • [33] Utku, A., Hindistan'daki Turistik Şehirlerin İklim Değişkenlerinin Tahminine Yönelik Hibrit ConvGRU Modeli. Mühendislik Bilimleri ve Araştırmaları Dergisi, 6(2): 165-176, 2024.
  • [34] Utku, A., Hybrid CNN-LSTM Model for Air Quality Prediction: A Case Study for Gurugram. Journal of Soft Computing and Artificial Intelligence, 5(1): 33-40, 2024.
  • [35] Mohammadi B., Mehdizadeh S., Ahmadi F., Lien N.T.T., Linh N.T.T., Pham Q.B., Developing hybrid time series and artificial intelligence models for estimating air temperatures, Stochastic Environmental Research and Risk Assessment. 35: 1189-1204, 2021.

Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan'ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması

Yıl 2024, Cilt: 12 Sayı: 2, 184 - 197
https://doi.org/10.18586/msufbd.1561443

Öz

Rüzgâr hızı tahmini lojistik, enerji üretimi ve yenilenebilir enerji kaynakları, havacılık ve denizcilik, tarım, afet yönetimi, çevresel izleme, inşaat, yaşam planlama ile ekonomik faaliyetler için oldukça önemlidir. Doğru tahminler, enerji verimliliğini artırır, güvenliği sağlar, ekonomik faydalar sunar ve çevresel yönetimi iyileştirir. Gelişmiş tahmin yöntemleri ve teknolojileri, bu alanlardaki etkinliği ve doğruluğu artırarak, toplumsal ve ekonomik hayatın birçok yönünü olumlu yönde etkiler. Rüzgâr hızı tahmininde kullanılan geleneksel yöntemler, genellikle fiziksel ve istatistiksel analizlere dayanmaktadır. Yapay zekâ yöntemleri ise büyük verisetlerini analiz ederek öğrendiği karmaşık örüntülerden daha yüksek doğrulukta tahminler üretilmesini sağlar. Bu çalışmada, Hindistan’ın en yüksek rüzgâr hızına sahip şehirlerinden olan Jaisalmer, Kochi, Mangalore, Puri ve Rameswaram şehirlerinin rüzgâr hızlarının tahmin edilmesi amaçlanmıştır. Rüzgâr hızı tahminine yönelik CNN ve LSTM modellerinin etkin özelliklerinden faydalanarak ConvLSTM hibrit modeli geliştirilmiştir. ConvLSTM ile mekânsal ve zamansal verileri aynı anda işleyerek rüzgâr hızının dinamiklerini daha iyi belirlemek amaçlanmıştır. ConvLSTM, RF, SVM, ANFIS, CNN ve LSTM ile rüzgâr hızının 10 metre ve 100 metre yüksekliklerdeki ölçümlerinden oluşan yaklaşık 15 yıllık saatlik ve gerçek zamanlı bir veriseti kullanılarak kapsamlı bir şekilde test edilmiştir. Deneysel sonuçlar, ConvLSTM'in her bir şehir ve rüzgâr hızı parametresinin neredeyse tamamında 0,9'un üzerinde R2 değerine sahip olduğunu ve karşılaştırılan modellerden daha başarılı olduğunu göstermiştir.

Kaynakça

  • [1] Jaseena K.U., Kovoor B.C., Deterministic weather forecasting models based on intelligent predictors: A survey, Journal of King Saud University-Computer and Information Sciences. 34(6): 3393-3412, 2022.
  • [2] Xu M., Yu L., Liang K., Vihma T., Bozkurt D., Hu X., Yang Q., Dominant role of vertical air flows in the unprecedented warming on the Antarctic Peninsula in February 2020, Communications Earth and Environment. 2(1), 2021.
  • [3] Van Haaren R., Fthenakis V.. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State, Renewable and sustainable energy reviews. 15(7): 3332-3340, 2011.
  • [4] Jing H., Li W., Su Y., Zhao W., Zhang J., Qiao M., Liu Q., Numerical study of wind characteristics at a long-span bridge site in mountain valley, Physics of Fluids. 36(3), 2024.
  • [5] Young I.R., Kirezci E., Ribal A., The global wind resource observed by scatterometer, Remote Sensing. 12(18), 2020.
  • [6] Amini M., Memari A.M., Review of literature on performance of coastal residential buildings under hurricane conditions and lessons learned, Journal of performance of constructed facilities. 34(6), 2020.
  • [7] Ma L., Bocchini P., Christou V., Fragility models of electrical conductors in power transmission networks subjected to hurricanes, Structural Safety. 82, 2020.
  • [8] Sibanda S., Workneh T.S., Potential causes of postharvest losses, low-cost cooling technology for fresh produce farmers in Sub-Sahara Africa, African Journal of Agricultural Research. 16(5): 553-566, 2020.
  • [9] Brune S., Keller J.D., Wahl S., Evaluation of wind speed estimates in reanalyses for wind energy applications, Advances in Science and Research. 18: 115-126, 2021.
  • [10] Gliksman D., Averbeck P., Becker N., Gardiner B., Goldberg V., Grieger J., Franzke C.L., Wind and storm damage: From Meteorology to Impacts, Natural Hazards and Earth System Sciences Discussions. 1-47, 2022.
  • [11] Neo E.X., Hasikin K., Lai K.W., Mokhtar M.I., Azizan M.M., Hizaddin H.F., Razak S.A., Artificial intelligence-assisted air quality monitoring for smart city management, PeerJ Computer Science. 9, 2023.
  • [12] Dranka G.G., Ferreira P., Vaz A.I.F., Integrating supply and demand-side management in renewable-based energy systems, Energy. 232, 2021.
  • [13] Rosenow J., Lindner M., Scheiderer J., Advanced flight planning and the benefit of in-flight aircraft trajectory optimization, Sustainability.; 13(3), 2021.
  • [14] Gultepe I., A review on weather impact on aviation operations: Visibility, wind, precipitation, icing, Journal of Airline Operations and Aviation Management. 2(1): 1-44, 2023.
  • [15] De Perez E.C., Berse K.B., Depante L.A.C., Easton-Calabria E., Evidente E.P.R., Ezike T., Van Sant C., Learning from the past in moving to the future: Invest in communication and response to weather early warnings to reduce death and damage, Climate Risk Management. 38, 2022.
  • [16] Jovanovic N., Pereira L.S., Paredes P., Pôças I., Cantore V., Todorovic M., A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods, Agricultural water management. 239, 2020.
  • [17] Giovannini L., Ferrero E., Karl T., Rotach M.W., Staquet C., Trini Castelli S., Zardi D., Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modelling, Atmosphere. 11(6), 2020.
  • [18] Malik P., Gehlot A., Singh R., Gupta L.R., Thakur A.K., A review on ANN based model for solar radiation and wind speed prediction with real-time data, Archives of Computational Methods in Engineering. 29(5): 3183-3201, 2022.
  • [19] Aggarwal D., Sharma D., Saxena A.B., Role of AI in cyber security through Anomaly detection and Predictive analysis, Journal of Informatics Education and Research. 3(2), 2023.
  • [20] Kosovic I.N., Mastelic T., Ivankovic D., Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis, Journal of cleaner production. 266, 2020.
  • [21] Dewitte S., Cornelis J.P., Müller R., Munteanu A., Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction, Remote Sensing. 13(16), 2021.
  • [22] Subbiah S.S., Paramasivan S.K., Arockiasamy K., Senthivel S., Thangavel M., Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features, Intelligent Automation and Soft Computing. 35(3), 2023.
  • [23] Chen P., Han D., Effective wind speed estimation study of the wind turbine based on deep learning, Energy. 247, 2022.
  • [24] Chen X., Yu R., Ullah S., Wu D., Li Z., Li Q., Zhang Y., A novel loss function of deep learning in wind speed forecasting, Energy. 238, 2022.
  • [25] Han Y., Mi L., Shen L., Cai C.S., Liu Y., Li K., Xu G., A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting, Applied Energy. 312, 2022.
  • [26] Khodayar M., Saffari M., Williams M., Jalali M.J., Interval deep learning architecture with rough pattern recognition and fuzzy inference for short-term wind speed forecasting, Energy. 254, 2022.
  • [27] Hao Y., Yang W., Yin K., Novel wind speed forecasting model based on a deep learning combined strategy in urban energy systems, Expert Systems with Applications. 219, 2023.
  • [28] Indian Cities Weather 2010-2024: Dive In!. https://www.kaggle.com/datasets/mukeshdevrath007/indian-5000-cities-weather-data (Erişim tarihi: 15.04.2024)
  • [29] Karabadji N.E.I., Korba A.A., Assi A., Seridi H., Aridhi S., Dhifli W., Accuracy and diversity-aware multi-objective approach for random forest construction, Expert Systems with Applications. 225, 2023.
  • [30] Bansal M., Goyal A., Choudhary A., A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning, Decision Analytics Journal. 3, 2022.
  • [31] Canbay, Y., Adsiz, S., Canbay, P., Privacy-Preserving Transfer Learning Framework for Kidney Disease Detection. Applied Sciences, 14(19), 8629, 2024.
  • [32] Kaya, M., Bilge, H. Ş., Benzerlik Tabanlı Öğrenme Kullanarak Histopatolojik Görüntülerin Sınıflandırılması. EMO Bilimsel Dergi, 14(2): 49-58, 2024.
  • [33] Utku, A., Hindistan'daki Turistik Şehirlerin İklim Değişkenlerinin Tahminine Yönelik Hibrit ConvGRU Modeli. Mühendislik Bilimleri ve Araştırmaları Dergisi, 6(2): 165-176, 2024.
  • [34] Utku, A., Hybrid CNN-LSTM Model for Air Quality Prediction: A Case Study for Gurugram. Journal of Soft Computing and Artificial Intelligence, 5(1): 33-40, 2024.
  • [35] Mohammadi B., Mehdizadeh S., Ahmadi F., Lien N.T.T., Linh N.T.T., Pham Q.B., Developing hybrid time series and artificial intelligence models for estimating air temperatures, Stochastic Environmental Research and Risk Assessment. 35: 1189-1204, 2021.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Anıl Utku 0000-0002-7240-8713

Sinem Akyol 0000-0001-9308-3500

Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 7 Ekim 2024
Kabul Tarihi 26 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Utku, A., & Akyol, S. (2024). Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması. Mus Alparslan University Journal of Science, 12(2), 184-197. https://doi.org/10.18586/msufbd.1561443
AMA Utku A, Akyol S. Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması. MAUN Fen Bil. Dergi. Aralık 2024;12(2):184-197. doi:10.18586/msufbd.1561443
Chicago Utku, Anıl, ve Sinem Akyol. “Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması”. Mus Alparslan University Journal of Science 12, sy. 2 (Aralık 2024): 184-97. https://doi.org/10.18586/msufbd.1561443.
EndNote Utku A, Akyol S (01 Aralık 2024) Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması. Mus Alparslan University Journal of Science 12 2 184–197.
IEEE A. Utku ve S. Akyol, “Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması”, MAUN Fen Bil. Dergi., c. 12, sy. 2, ss. 184–197, 2024, doi: 10.18586/msufbd.1561443.
ISNAD Utku, Anıl - Akyol, Sinem. “Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması”. Mus Alparslan University Journal of Science 12/2 (Aralık 2024), 184-197. https://doi.org/10.18586/msufbd.1561443.
JAMA Utku A, Akyol S. Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması. MAUN Fen Bil. Dergi. 2024;12:184–197.
MLA Utku, Anıl ve Sinem Akyol. “Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması”. Mus Alparslan University Journal of Science, c. 12, sy. 2, 2024, ss. 184-97, doi:10.18586/msufbd.1561443.
Vancouver Utku A, Akyol S. Rüzgâr Hızı Tahminine Yönelik Hibrit ConvLSTM Modeli: Hindistan’ın En Yüksek Rüzgâr Hızına Sahip Şehirleri İçin Bir Vaka Çalışması. MAUN Fen Bil. Dergi. 2024;12(2):184-97.