Araştırma Makalesi
BibTex RIS Kaynak Göster

𝛂 Mertebesinde İstatatistiksel Yakınsaklık ve Sınırlılık

Yıl 2025, Cilt: 13 Sayı: 1, 1 - 6, 30.06.2025
https://doi.org/10.18586/msufbd.1573487

Öz

Bu makalede, terimleri sıfırdan farklı u ve v sayı dizileri için (∆_v^m )_u-istatistiksel yakınsaklık ve (∆_v^m )_u-istatistiksel sınırlılık kavramlarını tanımladık. Daha sonra bu kavramları λ_1=1, λ_(n+1)≤λ_n+1 ve λ_n→∞ (n→∞) şartını sağlayan (λ_n) dizilerini kullanarak (∆_(λ,v)^m )_u-istatistiksel yakınsaklık ve (∆_(λ,v)^m )_u-istatistiksel sınırlılık kavramlarına genişlettik. Daha sonra (∆_(λ,v)^m )_u-istatistiksel yakınsaklık ve (∆_(λ,v)^m )_u-istatistiksel sınırlılık kavramlarını kullanarak 0<α≤1 şartını sağlayan α sayıları yardımıyla (∆_(λ,v)^m )_u (S_c^α) ve (∆_(λ,v)^m )_u (S_b^α) dizi uzaylarını tanımladık. Ayrıca bu dizi uzayları arasındaki ve bazı özel durumlarında elde edilen dizi uzayları arasındaki kapsama bağıntılarını inceledik.

Kaynakça

  • [1] Fast H. Sur la convergence statistique, in Colloquium Mathematicae, 1951.
  • [2] Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique, in Colloq. math, 1951
  • [3] Buck R. C. Generalized Asymptotic Density.American Journal of Mathematics, 75 335-346, 1953.
  • [4] Schoenberg I.J. The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66 361-775, 1959.
  • [5] Mursaleen M. λ-statistical convergence, Mathematica Slovaca, 50 111-115, 2000.
  • [6] Gadjiev A., Orhan C. Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics, 129-138, 2002.
  • [7] Çolak R. Statistical convergence of order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India, 121–129, 2010.
  • [8] Çolak R. On λ-statistical convergence, in Conference on Summability and Applications, Turkey, 2011.
  • [9] Çolak R., Bektaş Ç. A. λ-Statistical convergence of order α, Acta Mathematica Scientia, 31 953-959, 2011.
  • [10] Kizmaz H. On certain sequence spaces, Canadian Mathematical Bulletin, 24 169-176, 1981.
  • [11] Et M., Çolak R. On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21 377-386, 1995.
  • [12] Et M., Nuray F. Delta (m)-Statistical convergence, Indian Journal of Pure & Applied Mathematics, 32, 2001.
  • [13] Çolak R. On some generalized sequence spaces, Communications Faculty Of Science University of Ankara Series A1 Mathematics and Statistics, 035-046, 1989.
  • [14] Et M., Esi A. On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc., 23 25-32, 2000.
  • [15] Fridy J., Orhan C. Statistical limit superior and limit inferior, Proceedings of the American Mathematical Society, 125 3625-3631, 1997.
  • [16] Bhardwaj V. K., Gupta S. On some generalizations of statistical boundedness, Journal of Inequalities and Applications, 12, 2014.
  • [17] Temizsu F., Et M. Some results on generalizations of statistical boundedness, Mathematical Methods in the Applied Sciences, 44 7471-7478, 2021.

(∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂

Yıl 2025, Cilt: 13 Sayı: 1, 1 - 6, 30.06.2025
https://doi.org/10.18586/msufbd.1573487

Öz

In this paper, we defined the concepts of (∆_v^m )_u-statistical convergence and (∆_v^m )_u-statistical boundedness for sequences u and v with nonzero terms. Then, we extend these concepts to the concepts of (∆_(λ,v)^m )_u-statistical convergence and (∆_(λ,v)^m )_u-statistical boundedness using the sequences (λ_n) satisfying the conditions λ_1=1, λ_(n+1)≤λ_n+1 and λ_n→∞ (n→∞). Then, using the concepts of (∆_(λ,v)^m )_u-statistical convergence and (∆_(λ,v)^m )_u-statistical boundedness, we defined the sequence spaces (∆_(λ,v)^m )_u (S_c^α) and (∆_(λ,v)^m )_u (S_b^α) with the help of numbers α satisfying the condition 0<α≤1. We also investigated the inclusion relations between these sequence spaces and between the sequence spaces obtained in some special cases.

Kaynakça

  • [1] Fast H. Sur la convergence statistique, in Colloquium Mathematicae, 1951.
  • [2] Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique, in Colloq. math, 1951
  • [3] Buck R. C. Generalized Asymptotic Density.American Journal of Mathematics, 75 335-346, 1953.
  • [4] Schoenberg I.J. The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66 361-775, 1959.
  • [5] Mursaleen M. λ-statistical convergence, Mathematica Slovaca, 50 111-115, 2000.
  • [6] Gadjiev A., Orhan C. Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics, 129-138, 2002.
  • [7] Çolak R. Statistical convergence of order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India, 121–129, 2010.
  • [8] Çolak R. On λ-statistical convergence, in Conference on Summability and Applications, Turkey, 2011.
  • [9] Çolak R., Bektaş Ç. A. λ-Statistical convergence of order α, Acta Mathematica Scientia, 31 953-959, 2011.
  • [10] Kizmaz H. On certain sequence spaces, Canadian Mathematical Bulletin, 24 169-176, 1981.
  • [11] Et M., Çolak R. On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21 377-386, 1995.
  • [12] Et M., Nuray F. Delta (m)-Statistical convergence, Indian Journal of Pure & Applied Mathematics, 32, 2001.
  • [13] Çolak R. On some generalized sequence spaces, Communications Faculty Of Science University of Ankara Series A1 Mathematics and Statistics, 035-046, 1989.
  • [14] Et M., Esi A. On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc., 23 25-32, 2000.
  • [15] Fridy J., Orhan C. Statistical limit superior and limit inferior, Proceedings of the American Mathematical Society, 125 3625-3631, 1997.
  • [16] Bhardwaj V. K., Gupta S. On some generalizations of statistical boundedness, Journal of Inequalities and Applications, 12, 2014.
  • [17] Temizsu F., Et M. Some results on generalizations of statistical boundedness, Mathematical Methods in the Applied Sciences, 44 7471-7478, 2021.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Çiğdem Bektaş 0000-0003-0397-3193

Tuba Dinç 0000-0002-7450-6456

Erken Görünüm Tarihi 24 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 23 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Bektaş, Ç., & Dinç, T. (2025). (∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂. Mus Alparslan University Journal of Science, 13(1), 1-6. https://doi.org/10.18586/msufbd.1573487
AMA Bektaş Ç, Dinç T. (∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂. MAUN Fen Bil. Dergi. Haziran 2025;13(1):1-6. doi:10.18586/msufbd.1573487
Chicago Bektaş, Çiğdem, ve Tuba Dinç. “(∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂”. Mus Alparslan University Journal of Science 13, sy. 1 (Haziran 2025): 1-6. https://doi.org/10.18586/msufbd.1573487.
EndNote Bektaş Ç, Dinç T (01 Haziran 2025) (∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂. Mus Alparslan University Journal of Science 13 1 1–6.
IEEE Ç. Bektaş ve T. Dinç, “(∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂”, MAUN Fen Bil. Dergi., c. 13, sy. 1, ss. 1–6, 2025, doi: 10.18586/msufbd.1573487.
ISNAD Bektaş, Çiğdem - Dinç, Tuba. “(∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂”. Mus Alparslan University Journal of Science 13/1 (Haziran2025), 1-6. https://doi.org/10.18586/msufbd.1573487.
JAMA Bektaş Ç, Dinç T. (∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂. MAUN Fen Bil. Dergi. 2025;13:1–6.
MLA Bektaş, Çiğdem ve Tuba Dinç. “(∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂”. Mus Alparslan University Journal of Science, c. 13, sy. 1, 2025, ss. 1-6, doi:10.18586/msufbd.1573487.
Vancouver Bektaş Ç, Dinç T. (∆_v^m )_u-Statistical Boundedness and Convergence of Order 𝛂. MAUN Fen Bil. Dergi. 2025;13(1):1-6.