Araştırma Makalesi
BibTex RIS Kaynak Göster

Cu(II) Giderimi için Chenopodium Botrys Türevi Aktif Karbon Kullanımı: Sürdürülebilir Bir Yaklaşım

Yıl 2025, Cilt: 13 Sayı: 1, 57 - 63, 30.06.2025
https://doi.org/10.18586/msufbd.1652087

Öz

Bu çalışma, Chenopodium botrys'den potasyum karbonat (K2CO3) aktivasyonu ile yeni bir aktif karbon üretimine odaklanmaktadır. Hazırlanan aktif karbonun fizikokimyasal özellikleri FT-IR, EDX ve SEM teknikleri kullanılarak analiz edilmiş ve adsorpsiyon performansını artıran fonksiyonel gruplar açısından zengin bazı gözenekli yapılar doğrulanmıştır. Adsorpsiyon çalışmalarını en verimli koşullar altında yürütmek için optimum parametreler belirlendi. Adsorpsiyon kinetiği için sözde ikinci dereceden bir model, sürecin kemisorpsiyon tarafından yönlendirildiğini göstermiştir. Heterojen bir yüzey üzerinde çok katmanlı adsorpsiyon, Freundlich modelinin en iyi uyumu sunduğunu gösteren izoterm incelemeleri ile önerilmiştir. Sürecin endotermik karakteri, sıcaklıkla birlikte adsorpsiyon kapasitesindeki artışla da desteklenmiştir. Bu sonuçlar, Chenopodium botrys türevi aktif karbonun kirlenmiş su kaynaklarından Cu(II) giderimi için uygun maliyetli ve çevre dostu bir malzeme olma potansiyeline sahip olduğunu göstermektedir.

Kaynakça

  • [1] Zamora-Ledezma C., Negrete-Bolagay D., Figueroa F., Zamora-Ledezma E., Ni M., Alexis F., Guerrero V. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods, Environmental Technology & Innovation. 22 101504, 2012. https://doi.org/10.1016/J.ETI.2021.101504
  • [2] Kumar V., Parihar R., Sharma A., Bakshi P., Sidhu G., Bali A., Karaouzas I., Bhardwaj R., Thukral A., Gyasi‐Agyei Y., Rodrigo‐Comino J. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses, Chemosphere. 236 124364, 2019. https://doi.org/10.1016/j.chemosphere.2019.124364
  • [3] Aziz K., Mustafa F., Omer K., Hama S., Hamarawf R., Rahman K. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review, RSC Advances. 13 17595–17610, 2023. https://doi.org/10.1039/d3ra00723e
  • [4] Ekinci S., Onat E., Atiç S. Optimized synthesis and characterization of activated carbon from corn silk and corn silk hydrochar, ChemistrySelect. 10(5) e202405854, 2025. https://doi.org/10.1002/slct.202405854
  • [5] Ekinci S., Onat E. Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 26(2) 455-471, 2024. https://doi.org/10.25092/baunfbed.1297146
  • [6] Smriti A.A., Lodhi A., Shukla S. Copper toxicity in aquatic ecosystem: A Review, International Journal of Fisheries and Aquatic Studies. 11(4) 134-138, 2023. https://doi.org/10.22271/fish.2023.v11.i4b.2835
  • [7] Liu Y., Wang H., Cui Y., Chen N. Removal of Copper Ions from Wastewater: A Review, International Journal of Environmental Researcha and Public Health. 20(5) 3885, 2023. https://doi.org/10.3390/ijerph20053885
  • [8] Comber S., Deviller G., Wilson I, Peters A, Merrington G, Borrelli P, Baken S. (2022). Sources of copper into the European aquatic environment, Integrated Environmental Assessment and Management. 19(4) 1031–1047, 2023. https://doi.org/10.1002/ieam.4700
  • [9] Krayem M., Khatib S., Hassan Y., Deluchat V., Labrousse P. In search for potential biomarkers of copper stress in aquatic plants, Aquatic Toxicology. 239 105952, 2021. https://doi.org/10.1016/j.aquatox.2021.105952
  • [10] Castaldo G., Flipkens G., Pillet M., Town R., Bervoets L., Blust R., Boeck G. Antagonistic bioaccumulation of waterborne Cu(II) and Cd(II) in common carp (Cyprinus carpio) and effects on ion-homeostasis and defensive mechanisms, Aquatic Toxicology. 226 105561, 2020. https://doi.org/10.1016/j.aquatox.2020.105561
  • [11] Keller A., Adeleye A., Conway J., Garner K., Zhao L., Cherr G., Hong J., Gardea-Torresdey J., Godwin H., Hanna S., Ji Z., Kaweeteerawat C., Lin S., Lenihan H.M., et al. Comparative environmental fate and toxicity of copper nanomaterials, NanoImpact. 7 28-40, 2017. https://doi.org/10.1016/J.IMPACT.2017.05.003
  • [12] Tumampos S., Ensano B., Pingul-Ong S., Ong D., Kan C., Yee J., De Luna M. Isotherm, kinetics and thermodynamics of Cu(II) and Pb(II) adsorption on groundwater treatment sludge-derived manganese dioxide for wastewater treatment Applications, International Journal of Environmental Researcha and Public Health. 18(6) 3050, 2021; https://doi.org/10.3390/ijerph18063050
  • [13] Onat E., Ekinci S., A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal, Diamond and Related Materials. 143 110848, 2024. https://doi.org/10.1016/j.diamond.2024.110848
  • [14] Adame-Pereira M., Durán-Valle C., Fernández-González C.. Hydrothermal carbon coating of an activated carbon—A new adsorbent, Molecules. 28(12) 4769, 2023. https://doi.org/10.3390/molecules28124769
  • [15] Wang X., Cheng H., Ye G., Fan J., Yao F., Wang Y., Jiao Y., Zhu W., Huang H., Ye D. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review, Chemosphere. 287(2) 131995, 2021. https://doi.org/10.1016/j.chemosphere.2021.131995
  • [16] Ukanwa K., Patchigolla K., Sakrabani R., Anthony E., Mandavgane S. A review of chemicals to produce activated carbon from agricultural waste biomass, Sustainability. 11(22) 6204, 2019. https://doi.org/10.3390/su11226204
  • [17] Blachnio M., Deryło-Marczewska A., Charmas B., Zienkiewicz-Strzałka M., Bogatyrov V., Galaburda M. Activated carbon from agricultural wastes for adsorption of organic pollutants, Molecules. 25(21) 5105, 2020. https://doi.org/10.3390/molecules25215105
  • [18] Nazem M., Zare M., Shirazian S. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes, RSC Advances. 10,1463 – 1475, 2020. https://doi.org/10.1039/c9ra07409k
  • [19] Wu H., Chen S., Liao W., Wang W., Jang M., Chen W., Ahamad T., Alshehri S., Hou C., Lin K., Charinpanitkul T., Wu K. Assessment of agricultural waste-derived activated carbon in multiple applications, Environmental Research. 191 110176, 2020. https://doi.org/10.1016/j.envres.2020.110176
  • [20] Lewoyehu M. Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater, Journal of Analytical and Applied Pyrolysis. 159 105279, 2021. https://doi.org/10.1016/J.JAAP.2021.105279
  • [21] Kosheleva R., Mitropoulos A., Kyzas G. Synthesis of activated carbon from food waste, Environmental Chemistry Letters. 17 429-438, 2018. https://doi.org/10.1007/s10311-018-0817-5
  • [22] Bojilov D., Manolov S., Nacheva A., Dagnon S., Ivanov I. Characterization of polyphenols from chenopodium botrys after fractionation with different solvents and study of their in vitro biological activity, Molecules. 28(12) 4816, 2023. https://doi.org/10.3390/molecules28124816
  • [23] Gupta N., Sagar R., Kori M. Hepatoprotective potential of methanolic and aqueous extract of chenopodium botrys against lead-induced toxicity, International Journal of Pharmaceutical Investigation. 11(2) 165-169, 2021. https://doi.org/10.5530/IJPI.2021.2.30
  • [24] Sezer E., Uysal T. Phenolic screening and biological activities of Chenopodium botrys L. extracts, Anatolian Journal of Botany. 5(2) 78-83, 2021. https://doi.org/10.30616/AJB.890324
  • [25] Wang L., Sun F., Hao F., Qu Z., Gao J., Liu M., Wang K., Zhao G., Qin Y. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors, Chemical Engineering Journal. 383 123205, 2020. https://doi.org/10.1016/j.cej.2019.123205.
  • [26] Peter O., Adeyinka O., Akolade R. Application of snail shell chitosan as a bioadsorbent in removal of copper (II) ions from wastewater, Earthline Journal of Chemical Sciences. 2(1) 141-151, 2019. https://doi.org/10.34198/EJCS.2119.141151
  • [27] Cheng X., Wei M., Tian G., Luo Y., Hua W. Vibrationally-resolved X-ray photoelectron spectra of six polycyclic aromatic hydrocarbons from first-principles simulations, The Journal of Physical Chemistry A. 126(33) 5582-5593, 2022. https://doi.org/10.1021/acs.jpca.2c04426
  • [28] Hong T., Yin J.Y., Nie S.P., Xie M.Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective, Food Chemistry: X. 12 100168, 2021. https://doi.org/10.1016/j.fochx.2021.100168
  • [29] Torrellas S.A., Lovera R.G., Escalona N., Sepülveda C., Sotela J.L., Garcia J. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions, Chemical Engineering Journal. 279 788-798, 2015. http://dx.doi.org/10.1016/j.cej.2015.05.104
  • [30] Gezer B. Cu (II) adsorption with activated carbon obtained from sea urchin prepared by ultrasound-assisted method, Nigde Omer Halisdemir University Journal of Engineering Sciences, 9(2) 770-780, 2020. https://doi.org/10.28948/ngumuh.700773
  • [31] Ekinci S. Production of hydrochar from corn silk by hydrothermal carbonization technique and its modification for more effective removal of Cr (VI). Journal of Chinese Chemical Society. 71(1) 84-98, 2024. https://doi.org/10.1002/jccs.202300342
  • [32] Ekinci S. Elimination of methylene blue from aqueous medium using an agricultural waste product of crude corn silk (Stylus maydis) and corn silk treated with sulphuric acid, ChemistrySelect, 8(18) e202300284, 2023. https://doi.org/10.1002/slct.202300284
  • [33] Onat E., Ekinci S. Investigation of chromium (VI) heavy metal removal from water using activated carbon produced by hydrothermal pretreatment from industrial waste. In book: Science and Mathematics in a Globalizing World. Duvar Publishing, pp:45-61, April 2023.

Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach

Yıl 2025, Cilt: 13 Sayı: 1, 57 - 63, 30.06.2025
https://doi.org/10.18586/msufbd.1652087

Öz

This study focuses on the manufacture of a new activated carbon from Chenopodium botrys by potassium carbonate (K2CO3) activation. The physicochemical characteristics of the prepared activated carbon were analyzed using FT-IR, EDX, and SEM techniques, confirming some porous structure rich in functional groups that enhance adsorption performance. Optimum parameters were determined to carry out adsorption studies under the most efficient conditions. A pseudo-second-order model for the adsorption kinetics suggested that the process was driven by chemisorption. Multilayer adsorption on a heterogeneous surface was suggested by isotherm investigations, which showed that the Freundlich model offered the best fit. The process's endothermic character was further supported by the rise in adsorption capacity with temperature. These results show that Chenopodium botrys-derived activated carbon has the potential to be a cost-effective and environmentally friendly material for removing Cu(II) from contaminated water sources.

Kaynakça

  • [1] Zamora-Ledezma C., Negrete-Bolagay D., Figueroa F., Zamora-Ledezma E., Ni M., Alexis F., Guerrero V. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods, Environmental Technology & Innovation. 22 101504, 2012. https://doi.org/10.1016/J.ETI.2021.101504
  • [2] Kumar V., Parihar R., Sharma A., Bakshi P., Sidhu G., Bali A., Karaouzas I., Bhardwaj R., Thukral A., Gyasi‐Agyei Y., Rodrigo‐Comino J. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses, Chemosphere. 236 124364, 2019. https://doi.org/10.1016/j.chemosphere.2019.124364
  • [3] Aziz K., Mustafa F., Omer K., Hama S., Hamarawf R., Rahman K. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review, RSC Advances. 13 17595–17610, 2023. https://doi.org/10.1039/d3ra00723e
  • [4] Ekinci S., Onat E., Atiç S. Optimized synthesis and characterization of activated carbon from corn silk and corn silk hydrochar, ChemistrySelect. 10(5) e202405854, 2025. https://doi.org/10.1002/slct.202405854
  • [5] Ekinci S., Onat E. Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 26(2) 455-471, 2024. https://doi.org/10.25092/baunfbed.1297146
  • [6] Smriti A.A., Lodhi A., Shukla S. Copper toxicity in aquatic ecosystem: A Review, International Journal of Fisheries and Aquatic Studies. 11(4) 134-138, 2023. https://doi.org/10.22271/fish.2023.v11.i4b.2835
  • [7] Liu Y., Wang H., Cui Y., Chen N. Removal of Copper Ions from Wastewater: A Review, International Journal of Environmental Researcha and Public Health. 20(5) 3885, 2023. https://doi.org/10.3390/ijerph20053885
  • [8] Comber S., Deviller G., Wilson I, Peters A, Merrington G, Borrelli P, Baken S. (2022). Sources of copper into the European aquatic environment, Integrated Environmental Assessment and Management. 19(4) 1031–1047, 2023. https://doi.org/10.1002/ieam.4700
  • [9] Krayem M., Khatib S., Hassan Y., Deluchat V., Labrousse P. In search for potential biomarkers of copper stress in aquatic plants, Aquatic Toxicology. 239 105952, 2021. https://doi.org/10.1016/j.aquatox.2021.105952
  • [10] Castaldo G., Flipkens G., Pillet M., Town R., Bervoets L., Blust R., Boeck G. Antagonistic bioaccumulation of waterborne Cu(II) and Cd(II) in common carp (Cyprinus carpio) and effects on ion-homeostasis and defensive mechanisms, Aquatic Toxicology. 226 105561, 2020. https://doi.org/10.1016/j.aquatox.2020.105561
  • [11] Keller A., Adeleye A., Conway J., Garner K., Zhao L., Cherr G., Hong J., Gardea-Torresdey J., Godwin H., Hanna S., Ji Z., Kaweeteerawat C., Lin S., Lenihan H.M., et al. Comparative environmental fate and toxicity of copper nanomaterials, NanoImpact. 7 28-40, 2017. https://doi.org/10.1016/J.IMPACT.2017.05.003
  • [12] Tumampos S., Ensano B., Pingul-Ong S., Ong D., Kan C., Yee J., De Luna M. Isotherm, kinetics and thermodynamics of Cu(II) and Pb(II) adsorption on groundwater treatment sludge-derived manganese dioxide for wastewater treatment Applications, International Journal of Environmental Researcha and Public Health. 18(6) 3050, 2021; https://doi.org/10.3390/ijerph18063050
  • [13] Onat E., Ekinci S., A new material fabricated by the combination of natural mineral perlite and graphene oxide: Synthesis, characterization, and methylene blue removal, Diamond and Related Materials. 143 110848, 2024. https://doi.org/10.1016/j.diamond.2024.110848
  • [14] Adame-Pereira M., Durán-Valle C., Fernández-González C.. Hydrothermal carbon coating of an activated carbon—A new adsorbent, Molecules. 28(12) 4769, 2023. https://doi.org/10.3390/molecules28124769
  • [15] Wang X., Cheng H., Ye G., Fan J., Yao F., Wang Y., Jiao Y., Zhu W., Huang H., Ye D. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review, Chemosphere. 287(2) 131995, 2021. https://doi.org/10.1016/j.chemosphere.2021.131995
  • [16] Ukanwa K., Patchigolla K., Sakrabani R., Anthony E., Mandavgane S. A review of chemicals to produce activated carbon from agricultural waste biomass, Sustainability. 11(22) 6204, 2019. https://doi.org/10.3390/su11226204
  • [17] Blachnio M., Deryło-Marczewska A., Charmas B., Zienkiewicz-Strzałka M., Bogatyrov V., Galaburda M. Activated carbon from agricultural wastes for adsorption of organic pollutants, Molecules. 25(21) 5105, 2020. https://doi.org/10.3390/molecules25215105
  • [18] Nazem M., Zare M., Shirazian S. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes, RSC Advances. 10,1463 – 1475, 2020. https://doi.org/10.1039/c9ra07409k
  • [19] Wu H., Chen S., Liao W., Wang W., Jang M., Chen W., Ahamad T., Alshehri S., Hou C., Lin K., Charinpanitkul T., Wu K. Assessment of agricultural waste-derived activated carbon in multiple applications, Environmental Research. 191 110176, 2020. https://doi.org/10.1016/j.envres.2020.110176
  • [20] Lewoyehu M. Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater, Journal of Analytical and Applied Pyrolysis. 159 105279, 2021. https://doi.org/10.1016/J.JAAP.2021.105279
  • [21] Kosheleva R., Mitropoulos A., Kyzas G. Synthesis of activated carbon from food waste, Environmental Chemistry Letters. 17 429-438, 2018. https://doi.org/10.1007/s10311-018-0817-5
  • [22] Bojilov D., Manolov S., Nacheva A., Dagnon S., Ivanov I. Characterization of polyphenols from chenopodium botrys after fractionation with different solvents and study of their in vitro biological activity, Molecules. 28(12) 4816, 2023. https://doi.org/10.3390/molecules28124816
  • [23] Gupta N., Sagar R., Kori M. Hepatoprotective potential of methanolic and aqueous extract of chenopodium botrys against lead-induced toxicity, International Journal of Pharmaceutical Investigation. 11(2) 165-169, 2021. https://doi.org/10.5530/IJPI.2021.2.30
  • [24] Sezer E., Uysal T. Phenolic screening and biological activities of Chenopodium botrys L. extracts, Anatolian Journal of Botany. 5(2) 78-83, 2021. https://doi.org/10.30616/AJB.890324
  • [25] Wang L., Sun F., Hao F., Qu Z., Gao J., Liu M., Wang K., Zhao G., Qin Y. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors, Chemical Engineering Journal. 383 123205, 2020. https://doi.org/10.1016/j.cej.2019.123205.
  • [26] Peter O., Adeyinka O., Akolade R. Application of snail shell chitosan as a bioadsorbent in removal of copper (II) ions from wastewater, Earthline Journal of Chemical Sciences. 2(1) 141-151, 2019. https://doi.org/10.34198/EJCS.2119.141151
  • [27] Cheng X., Wei M., Tian G., Luo Y., Hua W. Vibrationally-resolved X-ray photoelectron spectra of six polycyclic aromatic hydrocarbons from first-principles simulations, The Journal of Physical Chemistry A. 126(33) 5582-5593, 2022. https://doi.org/10.1021/acs.jpca.2c04426
  • [28] Hong T., Yin J.Y., Nie S.P., Xie M.Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective, Food Chemistry: X. 12 100168, 2021. https://doi.org/10.1016/j.fochx.2021.100168
  • [29] Torrellas S.A., Lovera R.G., Escalona N., Sepülveda C., Sotela J.L., Garcia J. Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions, Chemical Engineering Journal. 279 788-798, 2015. http://dx.doi.org/10.1016/j.cej.2015.05.104
  • [30] Gezer B. Cu (II) adsorption with activated carbon obtained from sea urchin prepared by ultrasound-assisted method, Nigde Omer Halisdemir University Journal of Engineering Sciences, 9(2) 770-780, 2020. https://doi.org/10.28948/ngumuh.700773
  • [31] Ekinci S. Production of hydrochar from corn silk by hydrothermal carbonization technique and its modification for more effective removal of Cr (VI). Journal of Chinese Chemical Society. 71(1) 84-98, 2024. https://doi.org/10.1002/jccs.202300342
  • [32] Ekinci S. Elimination of methylene blue from aqueous medium using an agricultural waste product of crude corn silk (Stylus maydis) and corn silk treated with sulphuric acid, ChemistrySelect, 8(18) e202300284, 2023. https://doi.org/10.1002/slct.202300284
  • [33] Onat E., Ekinci S. Investigation of chromium (VI) heavy metal removal from water using activated carbon produced by hydrothermal pretreatment from industrial waste. In book: Science and Mathematics in a Globalizing World. Duvar Publishing, pp:45-61, April 2023.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atıksu Arıtma Süreçleri
Bölüm Araştırma Makalesi
Yazarlar

Selma Ekinci 0000-0002-7835-4832

Erhan Onat 0000-0003-1638-0151

Ramazan Astan 0009-0002-6516-0411

Erken Görünüm Tarihi 24 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 5 Mart 2025
Kabul Tarihi 25 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Ekinci, S., Onat, E., & Astan, R. (2025). Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach. Mus Alparslan University Journal of Science, 13(1), 57-63. https://doi.org/10.18586/msufbd.1652087
AMA Ekinci S, Onat E, Astan R. Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach. MAUN Fen Bil. Dergi. Haziran 2025;13(1):57-63. doi:10.18586/msufbd.1652087
Chicago Ekinci, Selma, Erhan Onat, ve Ramazan Astan. “Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach”. Mus Alparslan University Journal of Science 13, sy. 1 (Haziran 2025): 57-63. https://doi.org/10.18586/msufbd.1652087.
EndNote Ekinci S, Onat E, Astan R (01 Haziran 2025) Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach. Mus Alparslan University Journal of Science 13 1 57–63.
IEEE S. Ekinci, E. Onat, ve R. Astan, “Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach”, MAUN Fen Bil. Dergi., c. 13, sy. 1, ss. 57–63, 2025, doi: 10.18586/msufbd.1652087.
ISNAD Ekinci, Selma vd. “Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach”. Mus Alparslan University Journal of Science 13/1 (Haziran2025), 57-63. https://doi.org/10.18586/msufbd.1652087.
JAMA Ekinci S, Onat E, Astan R. Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach. MAUN Fen Bil. Dergi. 2025;13:57–63.
MLA Ekinci, Selma vd. “Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach”. Mus Alparslan University Journal of Science, c. 13, sy. 1, 2025, ss. 57-63, doi:10.18586/msufbd.1652087.
Vancouver Ekinci S, Onat E, Astan R. Cu(II) Adsorption from Aqueous Solution Using K2CO3-Activated Carbon Derived from Chenopodium botrys: A Sustainable Approach. MAUN Fen Bil. Dergi. 2025;13(1):57-63.