Araştırma Makalesi
BibTex RIS Kaynak Göster

6G Ağlarında Dinamik Kaynak Tahsisi için Kuyruk Teorisi ve GBM'nin Entegrasyonu

Yıl 2025, Cilt: 13 Sayı: 1, 70 - 80, 30.06.2025
https://doi.org/10.18586/msufbd.1672775

Öz

6G ağları, önceki nesillere kıyasla kesintisiz bağlantı ve benzeri görülmemiş gelişmeler vaat ediyor. Küçük hücreler, 6G’nin başarısının temelinde yer alıyor; bu hücreler, baz istasyonlarını kullanıcılara yakın yerleştirerek ağ kapsama alanını iyileştiriyor, gecikmeleri azaltıyor ve kapasiteyi artırıyor. Ancak, 6G ağlarında küçük hücrelerin yoğun bir şekilde konuşlandırılması, özellikle büyük durum ve eylem alanları nedeniyle kaynak tahsisinde önemli zorluklar ortaya çıkarıyor. Daha spesifik olarak, binlerce hücre için kaynak tahsis kararlarının hesaplanması gerekiyor. Ayrıca, yüksek kullanıcı hareketliliği nedeniyle sık sık kaynak yeniden tahsisi yapılması, algoritmik yükü artırıyor. Bu zorluklar, gecikme, veri aktarım hızı ve paket kaybı gibi kritik performans metriklerini olumsuz etkiliyor. Bu zorlukların üstesinden gelmek için bu makale, kuyruk teorisi tabanlı küçük hücre durum belirlemeyi Gradient Boosting Machine (GBM) tahminleriyle entegre eden dinamik bir kaynak tahsis modeli öneriyor. Bu entegre yaklaşım, bant genişliği, hesaplama gücü ve enerji kullanımının zamanında tahsis edilmesini sağlayarak dinamik kaynak ayarlamasını mümkün kılıyor. Simülasyon sonuçları, önerilen yaklaşımın gecikme, veri aktarım hızı ve paket kaybı açısından geleneksel kaynak tahsis yöntemlerine kıyasla etkinliğini ortaya koyuyor.

Kaynakça

  • [1] M. Shafi, R. K. Jha, and S. Jain, 6g: Technology evolution in future wireless networks, IEEE Access, vol. 12, pp. 57 548–57 573, 2024.
  • [2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, Toward 6g networks: Use cases and technologies, IEEE Communications Magazine, vol. 58, no. 3, pp. 55–61, 2020.
  • [3] S. Gopi, S. Kalyani, and L. Hanzo, Cooperative 3d beamforming for small-cell and cell-free 6g systems, IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5023–5036, 2022.
  • [4] Y. Sadi, S. Erkucuk, and E. Panayirci, Flexible physical layer-based resource allocation for machine type communications towards 6g, in 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5.
  • [5] S. Mhatre, F. Adelantado, K. Ramantas, and C. Verikoukis, Aiaas for oran-based 6g networks: Multi-time scale slice resource management with drl, in ICC 2024 - IEEE International Conference on Communications, 2024, pp. 5407–5412.
  • [6] F. Zhou, R. Ding, Q. Wu, D. W. K. Ng, K.-K. Wong, and N. Al-Dhahir,A partially observable deep multi-agent active inference framework for resource allocation in 6g and beyond wireless communications networks, in GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 2662–2667.
  • [7] A. Nouruzi, A. Rezaei, A. Khalili, N. Mokari, M. R. Javan, E. A. Jorswieck, and H. Yanikomeroglu, Smart resource allocation model via artificial intelligence in software defined 6g networks, in ICC 2023 - IEEE International Conference on Communications, 2023, pp. 5141–5146.
  • [8] W. Sun, H. Xu, H. Wang, S. Chang, S. Sun, and D. Miao, Research on user-centric wireless resource allocation of is tn based on reinforcement learning, in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 141–146.
  • [9] D. Li, S. R. Khosravirad, T. Tao, P. Baracca, and P. Wen, Power allocation for 6g sub-networks in industrial wireless control, in 2024 IEEE Wireless Communications and Networking Conference (WCNC), 2024, pp. 1–6.
  • [10] M. Wu, Y. Xiao, Y. Gao, and X. Lei, Design of quality-of-experience criteria for resource allocation toward 6g wireless networks: A review and new directions, in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 2022, pp. 1–7.
  • [11] X. Shen, W. Liao, and Q. Yin, “A novel wireless resource management for the 6g-enabled high-density internet of things,” IEEE Wireless Communications, vol. 29, no. 1, pp. 32–39, 2022.
  • [12] H. Zhang, Y. Zhang, X. Liu, K. Sun, and Y. Zhang, “Resource allocation and mobility management for perceptive mobile networks in 6g,” IEEE Wireless Communications, vol. 31, no. 4, pp. 223–229, 2024.
  • [13] Q. Guo, F. Tang, and N. Kato, “Federated reinforcement learning-based resource allocation in d2d-enabled 6g,” IEEE Network, vol. 37, no. 5, pp. 89–95, 2023.
  • [14] F. Rezazadeh, H. Chergui, S. Siddiqui, J. Mangues, H. Song, W. Saad, and M. Bennis, “Intelligible protocol learning for resource allocation in 6g o-ran slicing,” IEEE Wireless Communications, vol. 31, no. 5, pp. 192–199, 2024.
  • [15] J. Wang, Y. Li, J. Liu, and N. Kato, “Intelligent network slicing for b5g and 6g: Resource allocation, service provisioning, and security,” IEEE Wireless Communications, vol. 31, no. 3, pp. 271–277, 2024.
  • [16] J. Zhao, Y. Chen, and Y. Huang, “Qoe-driven wireless communication resource allocation based on digital twin edge network,” IEEE Journal of Radio Frequency Identification, vol. 8, pp. 277–281, 2024.
  • [17] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals of Queueing Theory, 4th ed. USA: Wiley-Interscience, 2008.

Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks

Yıl 2025, Cilt: 13 Sayı: 1, 70 - 80, 30.06.2025
https://doi.org/10.18586/msufbd.1672775

Öz

6G networks promise seamless connectivity and unprecedented advancements compared to previous generations. Small cells are at the core of 6G's success, which improves network coverage, reduces delays, and increases capacity by placing base stations close to users. However, the dense deployment of small cells in 6G networks introduces significant challenges, particularly in resource allocation due to huge state and action spaces. More specifically, resource allocation decisions must be computed for thousands of cells. Also, frequent resource reallocation due to high user mobility increases the algorithmic overhead. These challenges negatively impact critical performance metrics such as latency, throughput, and packet loss. To address these challenges, this paper proposes a dynamic resource allocation model that integrates queuing-theory-based small cell state determination with Gradient Boosting Machine (GBM) predictions. This integrated approach empowers dynamic resource adjustment by ensuring the timely allocation of bandwidth, computing power, and energy usage. The simulation results demonstrate the effectiveness of the proposed approach in terms of latency, throughput, and packet loss compared to conventional resource allocation methods.

Kaynakça

  • [1] M. Shafi, R. K. Jha, and S. Jain, 6g: Technology evolution in future wireless networks, IEEE Access, vol. 12, pp. 57 548–57 573, 2024.
  • [2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, Toward 6g networks: Use cases and technologies, IEEE Communications Magazine, vol. 58, no. 3, pp. 55–61, 2020.
  • [3] S. Gopi, S. Kalyani, and L. Hanzo, Cooperative 3d beamforming for small-cell and cell-free 6g systems, IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5023–5036, 2022.
  • [4] Y. Sadi, S. Erkucuk, and E. Panayirci, Flexible physical layer-based resource allocation for machine type communications towards 6g, in 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5.
  • [5] S. Mhatre, F. Adelantado, K. Ramantas, and C. Verikoukis, Aiaas for oran-based 6g networks: Multi-time scale slice resource management with drl, in ICC 2024 - IEEE International Conference on Communications, 2024, pp. 5407–5412.
  • [6] F. Zhou, R. Ding, Q. Wu, D. W. K. Ng, K.-K. Wong, and N. Al-Dhahir,A partially observable deep multi-agent active inference framework for resource allocation in 6g and beyond wireless communications networks, in GLOBECOM 2023 - 2023 IEEE Global Communications Conference, 2023, pp. 2662–2667.
  • [7] A. Nouruzi, A. Rezaei, A. Khalili, N. Mokari, M. R. Javan, E. A. Jorswieck, and H. Yanikomeroglu, Smart resource allocation model via artificial intelligence in software defined 6g networks, in ICC 2023 - IEEE International Conference on Communications, 2023, pp. 5141–5146.
  • [8] W. Sun, H. Xu, H. Wang, S. Chang, S. Sun, and D. Miao, Research on user-centric wireless resource allocation of is tn based on reinforcement learning, in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 141–146.
  • [9] D. Li, S. R. Khosravirad, T. Tao, P. Baracca, and P. Wen, Power allocation for 6g sub-networks in industrial wireless control, in 2024 IEEE Wireless Communications and Networking Conference (WCNC), 2024, pp. 1–6.
  • [10] M. Wu, Y. Xiao, Y. Gao, and X. Lei, Design of quality-of-experience criteria for resource allocation toward 6g wireless networks: A review and new directions, in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 2022, pp. 1–7.
  • [11] X. Shen, W. Liao, and Q. Yin, “A novel wireless resource management for the 6g-enabled high-density internet of things,” IEEE Wireless Communications, vol. 29, no. 1, pp. 32–39, 2022.
  • [12] H. Zhang, Y. Zhang, X. Liu, K. Sun, and Y. Zhang, “Resource allocation and mobility management for perceptive mobile networks in 6g,” IEEE Wireless Communications, vol. 31, no. 4, pp. 223–229, 2024.
  • [13] Q. Guo, F. Tang, and N. Kato, “Federated reinforcement learning-based resource allocation in d2d-enabled 6g,” IEEE Network, vol. 37, no. 5, pp. 89–95, 2023.
  • [14] F. Rezazadeh, H. Chergui, S. Siddiqui, J. Mangues, H. Song, W. Saad, and M. Bennis, “Intelligible protocol learning for resource allocation in 6g o-ran slicing,” IEEE Wireless Communications, vol. 31, no. 5, pp. 192–199, 2024.
  • [15] J. Wang, Y. Li, J. Liu, and N. Kato, “Intelligent network slicing for b5g and 6g: Resource allocation, service provisioning, and security,” IEEE Wireless Communications, vol. 31, no. 3, pp. 271–277, 2024.
  • [16] J. Zhao, Y. Chen, and Y. Huang, “Qoe-driven wireless communication resource allocation based on digital twin edge network,” IEEE Journal of Radio Frequency Identification, vol. 8, pp. 277–281, 2024.
  • [17] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals of Queueing Theory, 4th ed. USA: Wiley-Interscience, 2008.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgi Modelleme, Yönetim ve Ontolojiler
Bölüm Araştırma Makalesi
Yazarlar

Tuğçe Bilen 0000-0001-6680-8748

Erken Görünüm Tarihi 24 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 9 Nisan 2025
Kabul Tarihi 20 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Bilen, T. (2025). Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks. Mus Alparslan University Journal of Science, 13(1), 70-80. https://doi.org/10.18586/msufbd.1672775
AMA Bilen T. Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks. MAUN Fen Bil. Dergi. Haziran 2025;13(1):70-80. doi:10.18586/msufbd.1672775
Chicago Bilen, Tuğçe. “Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks”. Mus Alparslan University Journal of Science 13, sy. 1 (Haziran 2025): 70-80. https://doi.org/10.18586/msufbd.1672775.
EndNote Bilen T (01 Haziran 2025) Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks. Mus Alparslan University Journal of Science 13 1 70–80.
IEEE T. Bilen, “Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks”, MAUN Fen Bil. Dergi., c. 13, sy. 1, ss. 70–80, 2025, doi: 10.18586/msufbd.1672775.
ISNAD Bilen, Tuğçe. “Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks”. Mus Alparslan University Journal of Science 13/1 (Haziran2025), 70-80. https://doi.org/10.18586/msufbd.1672775.
JAMA Bilen T. Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks. MAUN Fen Bil. Dergi. 2025;13:70–80.
MLA Bilen, Tuğçe. “Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks”. Mus Alparslan University Journal of Science, c. 13, sy. 1, 2025, ss. 70-80, doi:10.18586/msufbd.1672775.
Vancouver Bilen T. Integrating Queuing Theory and GBM for Dynamic Resource Allocation in 6G Networks. MAUN Fen Bil. Dergi. 2025;13(1):70-8.