Yıl 2020, Cilt , Sayı 17, Sayfalar 11 - 22 2020-01-31

Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi

Eren KOMURLU [1] , Atila Gürhan ÇELİK [2]


Bu çalışmada farklı silt türü zeminlerin likit limit değerleri Casagrande ve koni penetrometre deneyleri ile farklı boşluk oranı değerleri için belirlenmiştir. Elde edilen sonuçlara göre, zeminlerin boşluk oranının likit limit değerleri üzerinde önemli ölçüde etkiye sahip olduğu görülmüştür. Boşluk oranı etkisi ve operatöre bağımlı etkinin minimize edilmesi için koni penetrasyon deneyinin Casagrande deneyine kıyasla avantajlı olduğu belirlenmiştir. Boşluk oranı ve likit limit değerleri arasındaki ilişki zeminlere göre farklılık göstermektedir. Bu sebeple boşluk oranı değişime bağlı likit limit değerinin kestirimine yönelik genel bir bağıntının kullanımı önerilmemiştir. Bunun yerine, boşluk oranındaki değişim için zeminlerin ayrı olarak test edilmesi önerilmiştir.
Likit limit, Atterberg limitleri, Boşluk oranı, Zemin sınıflama, Zemin testleri
  • Alikonis, A., 1995. Ground compaction zone of structures and structural strength of soil, Journal of Civil Engineering and Management, 1(2), 65-70. https://doi.org/10.3846/13921525.1995.10531513
  • Anbazhagan, P., Uday, A., Moustafa, S.S.R., Al-Arifi, N.S.N., 2017. Soil void ratio correlation with shear wave velocities and SPT N values for Indo-Gangetic basin, Journal of Geological Society of India, 89, 398-406. https://doi.org/10.1007/s12594-017-0621-z
  • Andrade F.A., Al-Qureshi H.A., Hotza, D., 2011. Measuring the plasticity of clays: A review, Applied Clay Science, 51, 1–7. doi:10.1016/j.clay.2010.10.028
  • ASTM International, 2010. ASTM D854-10: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • ASTM International, 2010. ASTM D4318-10: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2010.
  • ASTM International, 2019. ASTM D2216 – 19: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. 2019 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • Atterberg, A. 1911. Die Plastizität der Tone, Internationale Mitteilungen für Bodenkunde 1, 10–43
  • Barounis, N., Philpot, J., 2018. Estimation of in-situ water content and void ratio using CPT for saturated sands, Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT'18), Eds: Hicks, M.A., Pisanò, F., Peuchen, J., 21-22 June, 2018, Delft, The Netherlands, CRC Press, pp. 129-135
  • Bensoula, M., Missoum, H., Bendani, K., 2018. Liquefaction potential sand-silt mixtures under static loading. Revista de la Construccion, 17(2), 196-208. doi: 10.7764/RDLC.17.2.196
  • British Standards Institute, 1975. Methods of Test for Soils for Engineering Purposes, London
  • British Standards Institute, 1990. BS 1377-2 Methods of test for soils for civil engineering purposes: Classification Tests, London
  • Casagrande, A., 1932. Research on the Atterberg limits of soils, Public Roads, 13 (3), 121-136.
  • Casagrande, A., 1958. Notes on the Design of the Liquid Limit Device, Geotechnique, 8, 84-91
  • Clayton, C.R.I., Jukes, A.W., 1978. A One Point Cone Penetrometer Liquid Limit Test?, Geotechnique, 28, 469-472, https://doi.org/10.1680/geot.1978.28.4.469
  • Duncan, J.M., Wright, S.G., Brandon, T.L., 2014. Soil Strength and Slope Stability, John Wiley & Sons, United States, New Jersey.
  • Fiegel, G.L., Kutter, B.L., 1994. Liquefaction Mechanism for Layered Soils, Journal of Geotechnical Engineering, 120, Paper no: 737. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(737)
  • Hansbo, S., 1957. A new approach to the determination of the shear strength of clay by the fall cone test, Royal Swedish Geotechnical Institute
  • Henniche, A., Belkacemi, S., 2018. Numerical Simulation to Select Proper Strain Rates during CRS Consolidation Test, Periodica Polytechnica Civil Engineering, 62(2), 404-412. https://doi.org/10.3311/PPci.9650
  • International Organization for Standardization, 2017. ISO 17892-6:2017: Geotechnical investigation and testing - Laboratory testing of soil - Part 6: Fall cone test. Genava, Switzerland.
  • Kheirbek-Saoud, S., Fleureau, J., 2012. Liquefaction and post-liquefaction behaviour of a soft natural clayey soil. Geomechanics and Engineering, 4(2), 121-134. https://doi.org/10.12989/gae.2012.4.2.121
  • Li, Y., 2013. Effects of particle shape and size distribution on the shear strength behavior of composite soils, Bulletin of Engineering Geology and the Environment, 72, 371-381. https://doi.org/10.1007/s10064-013-0482-7
  • Moradi, G., Sotoubadi, M.H., Khatibi, B.R., 2014. The influence of overburden pressure on liquefaction potential, Turkish Journal of Engineering & Environmental Sciences, 38, 323-337.
  • Mujtaba, H., Farooq, K., Sivakugan, N., Das, B.M., 2018. Evaluation of relative density and friction angle based on SPT-N values, KSCE Journal of Civil Engineering, 22, 572-581. https://doi.org/10.1007/s12205-017-1899-5
  • Santana, T., Candeias, M., 2018. Effect of Void Ratio on K0 of a Sand by Means of Triaxial Stress-Path Testing, Geotechnical and Geological Engineering, 36, 257-266. https://doi.org/10.1007/s10706-017-0324-7
  • Sharma, B., Sridharan, A., 2018. Liquid and plastic limits of clays by cone method, International Journal of Geo-Engineering, 9:22. https://doi.org/10.1186/s40703-018-0092-0
  • Sherwood, P.T., Ryley, M.D., 1970. An investigation of a cone-penetrometer method for the determination of the liquid limit, Géotechnique, 20(2), 203–208. https://doi.org/10.1680/geot.1970.20.2.203
  • Stanchi, S., Catoni, M., D'Amicoa, M.E., Falsone, G., Bonifacio, E., 2017. Liquid and plastic limits of clayey, organic C-rich mountain soils: Role of organic matter and mineralogy, Catena, 151, 238–246. https://doi.org/10.1016/j.catena.2016.12.021
  • Standards Council of Canada (SCC), 2006. CAN/BNQ 2501-092/2006: Soils-determination of liquid limit by the Swedish fall cone penetrometer method and determination of plastic limit, National Standard of Canada, Ottawa, Ont.
  • Turkish Standards Institution (TSE), 2006. TS 1900-1: İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri, TSE, Bakanlıklar, Ankara
  • Ukritchon, B., Keawsawasvong, S., 2018. A new design equation for drained stability of conical slopes in cohesive-frictional soils, Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 358-366. https://doi.org/10.1016/j.jrmge.2017.10.004
  • Wasti, Y., 1987. Liquid and Plastic limits as determined from the fall cone and the Casagrande methods, ASTM Geotechnical Testing Journal, 10(1), 26-30. https://doi.org/10.1520/GTJ10135J
  • Wasti, Y., Bezirci, M.H., 1986. Determination of the Consistency Limits of Soils by the Fall Cone Test, Canadian Geotechnical Journal, 23, 241-246. https://doi.org/10.1139/t86-033
  • Yilmaz, Y., Kheirjouy, A.B., Akgungor, A.P., 2016. Investigation of the Effect of Different Saturation Methods on the Undrained Shear Strength of a Clayey Soil Compacted with Standard and Modified Proctor Energies, Periodica Polytechnica Civil Engineering, 60(3), 323-329. https://doi.org/10.3311/PPci.8891
  • Zhai, J., Cai, X., 2018. Strength Characteristics and Slope Stability of Expansive Soil from Pingdingshan, China, Advances in Materials Science and Engineering, vol. 2018, Article ID 3293619, 7 pages. https://doi.org/10.1155/2018/3293619.
  • Zhang, L.L., Fredlund M.D., Fredlund D.G., Lu, H., Wilson, G.W., 2015. The influence of the unsaturated soil zone on 2-D and 3-D slope stability analyses, Engineering Geology, 193, 374-383. https://doi.org/10.1016/j.enggeo.2015.05.011
  • Zhang, Q., Upadhyaya, S.K., Liaoa, Q., Li, X., 2018. Determination of in-situ engineering properties of soil using an inverse solution technique and limited field tests, Journal of Terramechanics, 79, 69-77. https://doi.org/10.1016/j.jterra.2018.07.001
  • Zhang, W., Goh, A.T.C., Zhang, Y., Chen, Y., Xiao, Y., 2015. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines, Engineering Geology, 188, 29-37. https://doi.org/10.1016/j.enggeo.2015.01.009
Birincil Dil tr
Konular Mühendislik, Ortak Disiplinler
Bölüm Araştırma Makalesi
Yazarlar

Yazar: Eren KOMURLU (Sorumlu Yazar)
Kurum: GİRESUN ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Atila Gürhan ÇELİK
Kurum: GİRESUN ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ocak 2020

Bibtex @araştırma makalesi { mtb682909, journal = {MT Bilimsel}, issn = {2146-9431}, address = {Kabil Cd. 1335 Sk No: 6 Daire: 8 Vadi Köşk Apt. Aşağı Öveçler Çankaya Ankara}, publisher = {Mayeb Basın Yayın İnsan Kaynakları Ltd. Şti.}, year = {2020}, volume = {}, pages = {11 - 22}, doi = {}, title = {Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi}, key = {cite}, author = {KOMURLU, Eren and ÇELİK, Atila Gürhan} }
APA KOMURLU, E , ÇELİK, A . (2020). Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel , (17) , 11-22 . Retrieved from https://dergipark.org.tr/tr/pub/mtb/issue/52203/682909
MLA KOMURLU, E , ÇELİK, A . "Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi". MT Bilimsel (2020 ): 11-22 <https://dergipark.org.tr/tr/pub/mtb/issue/52203/682909>
Chicago KOMURLU, E , ÇELİK, A . "Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi". MT Bilimsel (2020 ): 11-22
RIS TY - JOUR T1 - Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi AU - Eren KOMURLU , Atila Gürhan ÇELİK Y1 - 2020 PY - 2020 N1 - DO - T2 - MT Bilimsel JF - Journal JO - JOR SP - 11 EP - 22 VL - IS - 17 SN - 2146-9431- M3 - UR - Y2 - 2020 ER -
EndNote %0 MT Bilimsel Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi %A Eren KOMURLU , Atila Gürhan ÇELİK %T Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi %D 2020 %J MT Bilimsel %P 2146-9431- %V %N 17 %R %U
ISNAD KOMURLU, Eren , ÇELİK, Atila Gürhan . "Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi". MT Bilimsel / 17 (Ocak 2020): 11-22 .
AMA KOMURLU E , ÇELİK A . Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel. 2020; (17): 11-22.
Vancouver KOMURLU E , ÇELİK A . Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel. 2020; (17): 22-11.