Araştırma Makalesi
BibTex RIS Kaynak Göster

Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi

Yıl 2020, Sayı: 17, 11 - 22, 31.01.2020

Öz

Bu çalışmada farklı silt türü zeminlerin likit limit değerleri Casagrande ve koni penetrometre deneyleri ile farklı boşluk oranı değerleri için belirlenmiştir. Elde edilen sonuçlara göre, zeminlerin boşluk oranının likit limit değerleri üzerinde önemli ölçüde etkiye sahip olduğu görülmüştür. Boşluk oranı etkisi ve operatöre bağımlı etkinin minimize edilmesi için koni penetrasyon deneyinin Casagrande deneyine kıyasla avantajlı olduğu belirlenmiştir. Boşluk oranı ve likit limit değerleri arasındaki ilişki zeminlere göre farklılık göstermektedir. Bu sebeple boşluk oranı değişime bağlı likit limit değerinin kestirimine yönelik genel bir bağıntının kullanımı önerilmemiştir. Bunun yerine, boşluk oranındaki değişim için zeminlerin ayrı olarak test edilmesi önerilmiştir.

Kaynakça

  • Alikonis, A., 1995. Ground compaction zone of structures and structural strength of soil, Journal of Civil Engineering and Management, 1(2), 65-70. https://doi.org/10.3846/13921525.1995.10531513
  • Anbazhagan, P., Uday, A., Moustafa, S.S.R., Al-Arifi, N.S.N., 2017. Soil void ratio correlation with shear wave velocities and SPT N values for Indo-Gangetic basin, Journal of Geological Society of India, 89, 398-406. https://doi.org/10.1007/s12594-017-0621-z
  • Andrade F.A., Al-Qureshi H.A., Hotza, D., 2011. Measuring the plasticity of clays: A review, Applied Clay Science, 51, 1–7. doi:10.1016/j.clay.2010.10.028
  • ASTM International, 2010. ASTM D854-10: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • ASTM International, 2010. ASTM D4318-10: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2010.
  • ASTM International, 2019. ASTM D2216 – 19: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. 2019 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • Atterberg, A. 1911. Die Plastizität der Tone, Internationale Mitteilungen für Bodenkunde 1, 10–43
  • Barounis, N., Philpot, J., 2018. Estimation of in-situ water content and void ratio using CPT for saturated sands, Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT'18), Eds: Hicks, M.A., Pisanò, F., Peuchen, J., 21-22 June, 2018, Delft, The Netherlands, CRC Press, pp. 129-135
  • Bensoula, M., Missoum, H., Bendani, K., 2018. Liquefaction potential sand-silt mixtures under static loading. Revista de la Construccion, 17(2), 196-208. doi: 10.7764/RDLC.17.2.196
  • British Standards Institute, 1975. Methods of Test for Soils for Engineering Purposes, London
  • British Standards Institute, 1990. BS 1377-2 Methods of test for soils for civil engineering purposes: Classification Tests, London
  • Casagrande, A., 1932. Research on the Atterberg limits of soils, Public Roads, 13 (3), 121-136.
  • Casagrande, A., 1958. Notes on the Design of the Liquid Limit Device, Geotechnique, 8, 84-91
  • Clayton, C.R.I., Jukes, A.W., 1978. A One Point Cone Penetrometer Liquid Limit Test?, Geotechnique, 28, 469-472, https://doi.org/10.1680/geot.1978.28.4.469
  • Duncan, J.M., Wright, S.G., Brandon, T.L., 2014. Soil Strength and Slope Stability, John Wiley & Sons, United States, New Jersey.
  • Fiegel, G.L., Kutter, B.L., 1994. Liquefaction Mechanism for Layered Soils, Journal of Geotechnical Engineering, 120, Paper no: 737. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(737)
  • Hansbo, S., 1957. A new approach to the determination of the shear strength of clay by the fall cone test, Royal Swedish Geotechnical Institute
  • Henniche, A., Belkacemi, S., 2018. Numerical Simulation to Select Proper Strain Rates during CRS Consolidation Test, Periodica Polytechnica Civil Engineering, 62(2), 404-412. https://doi.org/10.3311/PPci.9650
  • International Organization for Standardization, 2017. ISO 17892-6:2017: Geotechnical investigation and testing - Laboratory testing of soil - Part 6: Fall cone test. Genava, Switzerland.
  • Kheirbek-Saoud, S., Fleureau, J., 2012. Liquefaction and post-liquefaction behaviour of a soft natural clayey soil. Geomechanics and Engineering, 4(2), 121-134. https://doi.org/10.12989/gae.2012.4.2.121
  • Li, Y., 2013. Effects of particle shape and size distribution on the shear strength behavior of composite soils, Bulletin of Engineering Geology and the Environment, 72, 371-381. https://doi.org/10.1007/s10064-013-0482-7
  • Moradi, G., Sotoubadi, M.H., Khatibi, B.R., 2014. The influence of overburden pressure on liquefaction potential, Turkish Journal of Engineering & Environmental Sciences, 38, 323-337.
  • Mujtaba, H., Farooq, K., Sivakugan, N., Das, B.M., 2018. Evaluation of relative density and friction angle based on SPT-N values, KSCE Journal of Civil Engineering, 22, 572-581. https://doi.org/10.1007/s12205-017-1899-5
  • Santana, T., Candeias, M., 2018. Effect of Void Ratio on K0 of a Sand by Means of Triaxial Stress-Path Testing, Geotechnical and Geological Engineering, 36, 257-266. https://doi.org/10.1007/s10706-017-0324-7
  • Sharma, B., Sridharan, A., 2018. Liquid and plastic limits of clays by cone method, International Journal of Geo-Engineering, 9:22. https://doi.org/10.1186/s40703-018-0092-0
  • Sherwood, P.T., Ryley, M.D., 1970. An investigation of a cone-penetrometer method for the determination of the liquid limit, Géotechnique, 20(2), 203–208. https://doi.org/10.1680/geot.1970.20.2.203
  • Stanchi, S., Catoni, M., D'Amicoa, M.E., Falsone, G., Bonifacio, E., 2017. Liquid and plastic limits of clayey, organic C-rich mountain soils: Role of organic matter and mineralogy, Catena, 151, 238–246. https://doi.org/10.1016/j.catena.2016.12.021
  • Standards Council of Canada (SCC), 2006. CAN/BNQ 2501-092/2006: Soils-determination of liquid limit by the Swedish fall cone penetrometer method and determination of plastic limit, National Standard of Canada, Ottawa, Ont.
  • Turkish Standards Institution (TSE), 2006. TS 1900-1: İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri, TSE, Bakanlıklar, Ankara
  • Ukritchon, B., Keawsawasvong, S., 2018. A new design equation for drained stability of conical slopes in cohesive-frictional soils, Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 358-366. https://doi.org/10.1016/j.jrmge.2017.10.004
  • Wasti, Y., 1987. Liquid and Plastic limits as determined from the fall cone and the Casagrande methods, ASTM Geotechnical Testing Journal, 10(1), 26-30. https://doi.org/10.1520/GTJ10135J
  • Wasti, Y., Bezirci, M.H., 1986. Determination of the Consistency Limits of Soils by the Fall Cone Test, Canadian Geotechnical Journal, 23, 241-246. https://doi.org/10.1139/t86-033
  • Yilmaz, Y., Kheirjouy, A.B., Akgungor, A.P., 2016. Investigation of the Effect of Different Saturation Methods on the Undrained Shear Strength of a Clayey Soil Compacted with Standard and Modified Proctor Energies, Periodica Polytechnica Civil Engineering, 60(3), 323-329. https://doi.org/10.3311/PPci.8891
  • Zhai, J., Cai, X., 2018. Strength Characteristics and Slope Stability of Expansive Soil from Pingdingshan, China, Advances in Materials Science and Engineering, vol. 2018, Article ID 3293619, 7 pages. https://doi.org/10.1155/2018/3293619.
  • Zhang, L.L., Fredlund M.D., Fredlund D.G., Lu, H., Wilson, G.W., 2015. The influence of the unsaturated soil zone on 2-D and 3-D slope stability analyses, Engineering Geology, 193, 374-383. https://doi.org/10.1016/j.enggeo.2015.05.011
  • Zhang, Q., Upadhyaya, S.K., Liaoa, Q., Li, X., 2018. Determination of in-situ engineering properties of soil using an inverse solution technique and limited field tests, Journal of Terramechanics, 79, 69-77. https://doi.org/10.1016/j.jterra.2018.07.001
  • Zhang, W., Goh, A.T.C., Zhang, Y., Chen, Y., Xiao, Y., 2015. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines, Engineering Geology, 188, 29-37. https://doi.org/10.1016/j.enggeo.2015.01.009
Yıl 2020, Sayı: 17, 11 - 22, 31.01.2020

Öz

Kaynakça

  • Alikonis, A., 1995. Ground compaction zone of structures and structural strength of soil, Journal of Civil Engineering and Management, 1(2), 65-70. https://doi.org/10.3846/13921525.1995.10531513
  • Anbazhagan, P., Uday, A., Moustafa, S.S.R., Al-Arifi, N.S.N., 2017. Soil void ratio correlation with shear wave velocities and SPT N values for Indo-Gangetic basin, Journal of Geological Society of India, 89, 398-406. https://doi.org/10.1007/s12594-017-0621-z
  • Andrade F.A., Al-Qureshi H.A., Hotza, D., 2011. Measuring the plasticity of clays: A review, Applied Clay Science, 51, 1–7. doi:10.1016/j.clay.2010.10.028
  • ASTM International, 2010. ASTM D854-10: Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • ASTM International, 2010. ASTM D4318-10: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, 2010 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2010.
  • ASTM International, 2019. ASTM D2216 – 19: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. 2019 Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • Atterberg, A. 1911. Die Plastizität der Tone, Internationale Mitteilungen für Bodenkunde 1, 10–43
  • Barounis, N., Philpot, J., 2018. Estimation of in-situ water content and void ratio using CPT for saturated sands, Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT'18), Eds: Hicks, M.A., Pisanò, F., Peuchen, J., 21-22 June, 2018, Delft, The Netherlands, CRC Press, pp. 129-135
  • Bensoula, M., Missoum, H., Bendani, K., 2018. Liquefaction potential sand-silt mixtures under static loading. Revista de la Construccion, 17(2), 196-208. doi: 10.7764/RDLC.17.2.196
  • British Standards Institute, 1975. Methods of Test for Soils for Engineering Purposes, London
  • British Standards Institute, 1990. BS 1377-2 Methods of test for soils for civil engineering purposes: Classification Tests, London
  • Casagrande, A., 1932. Research on the Atterberg limits of soils, Public Roads, 13 (3), 121-136.
  • Casagrande, A., 1958. Notes on the Design of the Liquid Limit Device, Geotechnique, 8, 84-91
  • Clayton, C.R.I., Jukes, A.W., 1978. A One Point Cone Penetrometer Liquid Limit Test?, Geotechnique, 28, 469-472, https://doi.org/10.1680/geot.1978.28.4.469
  • Duncan, J.M., Wright, S.G., Brandon, T.L., 2014. Soil Strength and Slope Stability, John Wiley & Sons, United States, New Jersey.
  • Fiegel, G.L., Kutter, B.L., 1994. Liquefaction Mechanism for Layered Soils, Journal of Geotechnical Engineering, 120, Paper no: 737. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(737)
  • Hansbo, S., 1957. A new approach to the determination of the shear strength of clay by the fall cone test, Royal Swedish Geotechnical Institute
  • Henniche, A., Belkacemi, S., 2018. Numerical Simulation to Select Proper Strain Rates during CRS Consolidation Test, Periodica Polytechnica Civil Engineering, 62(2), 404-412. https://doi.org/10.3311/PPci.9650
  • International Organization for Standardization, 2017. ISO 17892-6:2017: Geotechnical investigation and testing - Laboratory testing of soil - Part 6: Fall cone test. Genava, Switzerland.
  • Kheirbek-Saoud, S., Fleureau, J., 2012. Liquefaction and post-liquefaction behaviour of a soft natural clayey soil. Geomechanics and Engineering, 4(2), 121-134. https://doi.org/10.12989/gae.2012.4.2.121
  • Li, Y., 2013. Effects of particle shape and size distribution on the shear strength behavior of composite soils, Bulletin of Engineering Geology and the Environment, 72, 371-381. https://doi.org/10.1007/s10064-013-0482-7
  • Moradi, G., Sotoubadi, M.H., Khatibi, B.R., 2014. The influence of overburden pressure on liquefaction potential, Turkish Journal of Engineering & Environmental Sciences, 38, 323-337.
  • Mujtaba, H., Farooq, K., Sivakugan, N., Das, B.M., 2018. Evaluation of relative density and friction angle based on SPT-N values, KSCE Journal of Civil Engineering, 22, 572-581. https://doi.org/10.1007/s12205-017-1899-5
  • Santana, T., Candeias, M., 2018. Effect of Void Ratio on K0 of a Sand by Means of Triaxial Stress-Path Testing, Geotechnical and Geological Engineering, 36, 257-266. https://doi.org/10.1007/s10706-017-0324-7
  • Sharma, B., Sridharan, A., 2018. Liquid and plastic limits of clays by cone method, International Journal of Geo-Engineering, 9:22. https://doi.org/10.1186/s40703-018-0092-0
  • Sherwood, P.T., Ryley, M.D., 1970. An investigation of a cone-penetrometer method for the determination of the liquid limit, Géotechnique, 20(2), 203–208. https://doi.org/10.1680/geot.1970.20.2.203
  • Stanchi, S., Catoni, M., D'Amicoa, M.E., Falsone, G., Bonifacio, E., 2017. Liquid and plastic limits of clayey, organic C-rich mountain soils: Role of organic matter and mineralogy, Catena, 151, 238–246. https://doi.org/10.1016/j.catena.2016.12.021
  • Standards Council of Canada (SCC), 2006. CAN/BNQ 2501-092/2006: Soils-determination of liquid limit by the Swedish fall cone penetrometer method and determination of plastic limit, National Standard of Canada, Ottawa, Ont.
  • Turkish Standards Institution (TSE), 2006. TS 1900-1: İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri, TSE, Bakanlıklar, Ankara
  • Ukritchon, B., Keawsawasvong, S., 2018. A new design equation for drained stability of conical slopes in cohesive-frictional soils, Journal of Rock Mechanics and Geotechnical Engineering, 10(2), 358-366. https://doi.org/10.1016/j.jrmge.2017.10.004
  • Wasti, Y., 1987. Liquid and Plastic limits as determined from the fall cone and the Casagrande methods, ASTM Geotechnical Testing Journal, 10(1), 26-30. https://doi.org/10.1520/GTJ10135J
  • Wasti, Y., Bezirci, M.H., 1986. Determination of the Consistency Limits of Soils by the Fall Cone Test, Canadian Geotechnical Journal, 23, 241-246. https://doi.org/10.1139/t86-033
  • Yilmaz, Y., Kheirjouy, A.B., Akgungor, A.P., 2016. Investigation of the Effect of Different Saturation Methods on the Undrained Shear Strength of a Clayey Soil Compacted with Standard and Modified Proctor Energies, Periodica Polytechnica Civil Engineering, 60(3), 323-329. https://doi.org/10.3311/PPci.8891
  • Zhai, J., Cai, X., 2018. Strength Characteristics and Slope Stability of Expansive Soil from Pingdingshan, China, Advances in Materials Science and Engineering, vol. 2018, Article ID 3293619, 7 pages. https://doi.org/10.1155/2018/3293619.
  • Zhang, L.L., Fredlund M.D., Fredlund D.G., Lu, H., Wilson, G.W., 2015. The influence of the unsaturated soil zone on 2-D and 3-D slope stability analyses, Engineering Geology, 193, 374-383. https://doi.org/10.1016/j.enggeo.2015.05.011
  • Zhang, Q., Upadhyaya, S.K., Liaoa, Q., Li, X., 2018. Determination of in-situ engineering properties of soil using an inverse solution technique and limited field tests, Journal of Terramechanics, 79, 69-77. https://doi.org/10.1016/j.jterra.2018.07.001
  • Zhang, W., Goh, A.T.C., Zhang, Y., Chen, Y., Xiao, Y., 2015. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines, Engineering Geology, 188, 29-37. https://doi.org/10.1016/j.enggeo.2015.01.009
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Eren Komurlu

Atila Gürhan Çelik

Yayımlanma Tarihi 31 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 17

Kaynak Göster

APA Komurlu, E., & Çelik, A. G. (2020). Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel(17), 11-22.
AMA Komurlu E, Çelik AG. Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel. Ocak 2020;(17):11-22.
Chicago Komurlu, Eren, ve Atila Gürhan Çelik. “Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi”. MT Bilimsel, sy. 17 (Ocak 2020): 11-22.
EndNote Komurlu E, Çelik AG (01 Ocak 2020) Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel 17 11–22.
IEEE E. Komurlu ve A. G. Çelik, “Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi”, MT Bilimsel, sy. 17, ss. 11–22, Ocak 2020.
ISNAD Komurlu, Eren - Çelik, Atila Gürhan. “Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi”. MT Bilimsel 17 (Ocak 2020), 11-22.
JAMA Komurlu E, Çelik AG. Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel. 2020;:11–22.
MLA Komurlu, Eren ve Atila Gürhan Çelik. “Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi”. MT Bilimsel, sy. 17, 2020, ss. 11-22.
Vancouver Komurlu E, Çelik AG. Boşluk Oranının Farklı Siltlerin Likit Limit Değerleri üzerindeki Etkisi. MT Bilimsel. 2020(17):11-22.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors transfer copyright to the publisher for the accepted submissions.