Araştırma Makalesi
BibTex RIS Kaynak Göster

Financial Forecast in Business and an Application Proposal: The Case of Random Forest Technique

Yıl 2023, Sayı: 99, 171 - 194, 14.07.2023
https://doi.org/10.25095/mufad.1254043

Öz

The financial forecast is a subject that investors and researchers have been working on for many
years. The developing business environment and the globalising market have led to many variables. This
situation has led to the complexity of forecasting models. Technological developments have enabled financial
forecasts to be made by computer programs. This way, it has been possible to analyse with more variables
and avoid mistakes. In this study, five businesses from different sectors whose shares are traded in Borsa
Istanbul were randomly selected. The financial statements of these businesses between 2009 and 2020 were
obtained from the Public Disclosure Platform website. Current assets, fixed assets, equity, net sales, and net
profit items of the businesses between 2010 and 2020 are forecasted using the random forest technique. As
a result of the research, it has been determined that the random forest technique can be used effectively in
the financial forecast.

Kaynakça

  • REFERENCES Afanador, N. L.- Smolinskab, A.- Trand, T. N.- Blanchet, L. (2015), “Unsupervised Random Forest: A Tutorial with Case Studies”, Journal of Chemometrics (30), pp.232-241.
  • Altman, E. I. (1968), “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”, The Journal of Finance, 23(4), pp.589-609.
  • Altunöz, U. (2013), “Bankaların Finansal Başarısızlıklarının Yapay Sinir Ağları Modeli Çerçevesinde Tahmin Edilebilirliği”, Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 28(2), pp.189-217.
  • Araya, D. B.- Grolinger, K.- ElYamany, H. F.- Capretz, M. A.- Bitsuamlak, G. (2017), “An Ensemble Learning Framework for Anomaly Detection in Building Energy Consumption”, Energy and Buildings (144), pp.191-206.
  • Atiya, A. F. (2001), “Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and New Results, IEEE Transactions on Neural Networks”, 12(4), pp.929-935.
  • Bagheri, A.- Peyani, H. M.- Akbari, M. (2014), “Financial Forecasting Using ANFIS Networks with Quantum-Behaved Particle Swarm Optimization”, Expert Systems with Applications, 41(14), pp.6235-6250.
  • Beaver, W. H. (1966), “Financial Ratios as Predictors of Failure”, Journal of Accounting Research, pp.71-111. Bodur, Ç.- Teker, S. (2005), “Ticari Firmaların Kredi Derecelendirmesi: İMKB Firmalarına Uygulanması”, İTÜ Dergisi/b, Sosyal Bilimler, 2(1), pp.25-36.
  • Demir, Ş. (2010), “Reeskont Işlemlerinin Muhasebesi ve Vergisel Denetimi”, Muhasebe ve Vergi Uygulamaları Dergisi (3), pp.21-46.
  • Doğanay, M. (2016), “A Sectoral Approach to Foreign Exchange Risk Management”, International Journal of Cultural and Social Studies, 2(1), pp.149-164.
  • Ege, İ.- Bayrakdaroğlu, A. (2009), “İMKB Şirketlerinin Hisse Senedi Getiri Başarılarının Lojistik Regresyon Tekniği ile Analizi”, ZKÜ Sosyal Bilimler Dergisi, 5(10), pp.139-158.
  • Enke, D., - Thawornwong, S. (2005), “The Use of Data Mining and Neural Networks for Forecasting Stock Market Returns, Expert Systems with Applications”, 29(4), pp.927-940.
  • Fischer, T.- Krauss, C. (2018), “Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions”, European Journal of Operational Research (270), pp.654-669.
  • Ghosh, I.- Sanyal, M. K.- Jana, R. K. (2018), “Fractal Inspection and Machine Learning-Based Predictive Modelling Framework for Financial Markets”, Arabian Journal for Science and Engineering, 43(8), pp.4273-4287.
  • Horning, N. (2010), Random Forests: “An Algorithm for Image Classification and Generation of Continuous Fields Data Sets”, International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 2010, Osaka.
  • İşgüden Kılıç, B. (2019), “Muhasebe, Finans ve Denetim Alanlarında Ön Plana Çıkan Büyük Veri Analiz Teknikleri ve Teknolojileri”, Uluslararası Yönetim, Ekonomi ve Politika Kongresi (pp. 498-511), İstanbul: ICOMEP.
  • Ünvan, Y. A.- Tatlıdil, H. (2011), “Türk Bankacılık Sektörünün Çok Değişkenli İstatistiksel Yöntemler İle İncelenmesi”, Ege Akademik Bakış, 11(Özel Sayı), pp.29-40.
  • Jabeur, S. B.- Fahmi, Y. (2018), “Forecasting Financial Distress for French Firms: A Comparative Study”, Empirical Economics (54), pp.1173-1186.
  • Jareño, Á. J.- Valero, B. E.- Pavía, J. M. (2017), “Using Machine Learning for Financial Fraud Detection in The Accounts of Companies Investigated for Money Laundering”, Castellón: Economics Department, Universitat Jaume.
  • Karakoç, İ. (2020), “Yeniden Değerleme Oranı Uygulaması ve Vergisel Etkileri”, Mali Çözüm, 30(159), pp.251-260.
  • Kazem, A.- Sharifi, E.- Hussain, F. K.- Saberi, M.- Hussain, O. K. (2013), “Support Vector Regression with Chaos-Based Firefly Algorithm for Stock Market Price Forecasting”, Applied Soft Computing, 13(2), pp.947-958.
  • Kulalı, İ. (2016), “Altman Z-Skor Modelinin BİST Şirketlerinin Finansal Başarısızlık Riskinin Tahmin Edilmesinde Uygulanması”, Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(27), pp.283-291.
  • Kurtaran Çelik, M. (2010), “Bankaların Finansal Başarısızlıklarının Geleneksel ve Yeni Yöntemlerle Öngörüsü”, Yönetim ve Ekonomi, 17(2), pp.129-143.
  • Lee, T. K., Cho, J. H., Kwon, D. S., & Sohn, S. Y. (2019), “Global Stock Market Investment Strategies Based on Financial Network Indicators Using Machine Learning Techniques”, Expert Systems with Applications (117), pp.228-242.
  • Liaw, A. - Wiener, M. (2002), “Classification and Regression by Random Forest”, R News, 2(3), pp.18-22. Lin, T. H. (2009), “A Cross Model Study of Corporate Financial Distress Prediction in Taiwan: Multiple Discriminant Analysis, Logit, Probit and Neural Networks Models”, Neurocomputing, 72(16), pp.3507-3516.
  • Mahfoud, S.- Mani, G. (1996), “Financial Forecasting Using Genetic Algorıthms”, Applied Artificial Intelligence (10), pp.543-565.
  • Nami, S.- Shajari, M. (2018), “Cost-Sensitive Payment Card Fraud Detection Based on Dynamic Random Forest and K-Nearest Neighbors”, Expert Systems with Applications (110), pp.381-392.
  • Özkan, G.- İnal, M. (2014), “Comparison of Neural Network Application for Fuzzy and ANFIS Approaches for Multi-Criteria Decision-Making Problems”, Applied Soft Computing (24), ss.232-238.
  • Penman, S. H. (2010), “Financial Forecasting, Risk and Valuation: Accounting for the Future”, Journal of Accounting, Finance and Business Studies, 46(2), pp.211-228.
  • Petek, A.- Şanlı, O. (2019), “Türkiye’de Gayrisafi̇ Yurtiçi Hasıla, Döviz Kurları ve Sanayi̇ Üretim Endeksinin Kapasite Kullanım Oranları Üzerine Etkileri: Zaman Serileri Analizi”, International Review of Economics and Management, 7(1), pp.9-73.
  • Rose, P. S.- Andrews, W. T.- Giroux, G. A. (1982), “Predicting Business Failure: A Macroeconomic Perspective”, Journal of Accounting, Auditing and Finance, 6(1), pp.20-31.
  • Rustam, Z.- Saragih, G. S. (2018), “Predicting Bank Financial Failures Using Random Forest”, International Workshop on Big Data and Information Security (IWBIS) (pp. 81-86). Institute of Electrical and Electronics Engineers.
  • Sağlam, N. (2020), “Örnklerle Tekdüzen Hesap Planı”, Ankara: Muhasebe Kitapları İnternet Yayıncılık. Springate, G. L. (1978), “Predicting the Possibility of Failure in a Canadian Firm”, Doctoral Dissertation, Simon Fraser University.
  • Terzi, S. (2011), “Finansal Rasyolar Yardımıyla Finansal Başarısızlık Tahmini: Gıda Sektöründe Ampirik Bir Araştırma”, Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(1), pp.1-18.
  • Weber, M.- Domeniconi, G.- Chen, J.- Weidele, D. K.- Bellei, C.- Robinson, T.- Leiserson, C. E. (2019), “Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics”, KDD ’19 Workshop on Anomaly Detection in Finance, Anchorage: KDD.
  • Xiong, S. Y.- Lu, C.- Chang, L.- Xie, A. R. (2019), “Impact Analysis of Financial Early Warning Indicators Based on Random Forest. International Conference on Information Technology”, Electrical and Electronic Engineering (pp. 701-706), Sanya: DEStech Transactions on Computer Science and Engineering.
  • Xuan, S.- Liu, G.- Li, Z.- Zheng, L.- Wang, S.- Jiang, C. (2018), “Random Forest for Credit Card Fraud Detection”, IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Institute of Electrical and Electronics Engineers.

İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği

Yıl 2023, Sayı: 99, 171 - 194, 14.07.2023
https://doi.org/10.25095/mufad.1254043

Öz

Finansal kestirim, uzun yıllardır yatırımcıların ve araştırmacıların üzerinde çalışmalar yaptığı bir
konudur. Gelişen işletme çevresi ve küreselleşen piyasa birçok farklı değişkenin ortaya çıkmasını sağlamıştır.
Bu durum da tahmin modellerinin karmaşıklaşmasına yol açmıştır. Teknolojik gelişmeler, finansal kestirimin
bilgisayar programları tarafından yapılmasına olanak sağlamıştır. Bu sayede, hem daha fazla değişken ile
analiz yapma hem de hatalardan kaçınma imkânı doğmuştur. Bu çalışmada, hisseleri Borsa İstanbul’da
işlem gören farklı sektörlerden beş işletme seçilmiş ve söz konusu işletmelerin 2009-2020 yılları arası
finansal tabloları Kamuyu Aydınlatma Platformu web sitesinden edinilmiştir. İşletmelerin 2010-2020 yılları
arası; dönen varlıklar, duran varlıklar, özkaynaklar, net satışlar ve dönem net kârı kalemleri rassal orman
tekniği kullanılarak tahmin edilmiştir. Yapılan araştırma sonucunda, rassal orman tekniğinin finansal
kestirimde etkin bir şekilde kullanılabileceği tespit edilmiştir.

Kaynakça

  • REFERENCES Afanador, N. L.- Smolinskab, A.- Trand, T. N.- Blanchet, L. (2015), “Unsupervised Random Forest: A Tutorial with Case Studies”, Journal of Chemometrics (30), pp.232-241.
  • Altman, E. I. (1968), “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”, The Journal of Finance, 23(4), pp.589-609.
  • Altunöz, U. (2013), “Bankaların Finansal Başarısızlıklarının Yapay Sinir Ağları Modeli Çerçevesinde Tahmin Edilebilirliği”, Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 28(2), pp.189-217.
  • Araya, D. B.- Grolinger, K.- ElYamany, H. F.- Capretz, M. A.- Bitsuamlak, G. (2017), “An Ensemble Learning Framework for Anomaly Detection in Building Energy Consumption”, Energy and Buildings (144), pp.191-206.
  • Atiya, A. F. (2001), “Bankruptcy Prediction for Credit Risk Using Neural Networks: A Survey and New Results, IEEE Transactions on Neural Networks”, 12(4), pp.929-935.
  • Bagheri, A.- Peyani, H. M.- Akbari, M. (2014), “Financial Forecasting Using ANFIS Networks with Quantum-Behaved Particle Swarm Optimization”, Expert Systems with Applications, 41(14), pp.6235-6250.
  • Beaver, W. H. (1966), “Financial Ratios as Predictors of Failure”, Journal of Accounting Research, pp.71-111. Bodur, Ç.- Teker, S. (2005), “Ticari Firmaların Kredi Derecelendirmesi: İMKB Firmalarına Uygulanması”, İTÜ Dergisi/b, Sosyal Bilimler, 2(1), pp.25-36.
  • Demir, Ş. (2010), “Reeskont Işlemlerinin Muhasebesi ve Vergisel Denetimi”, Muhasebe ve Vergi Uygulamaları Dergisi (3), pp.21-46.
  • Doğanay, M. (2016), “A Sectoral Approach to Foreign Exchange Risk Management”, International Journal of Cultural and Social Studies, 2(1), pp.149-164.
  • Ege, İ.- Bayrakdaroğlu, A. (2009), “İMKB Şirketlerinin Hisse Senedi Getiri Başarılarının Lojistik Regresyon Tekniği ile Analizi”, ZKÜ Sosyal Bilimler Dergisi, 5(10), pp.139-158.
  • Enke, D., - Thawornwong, S. (2005), “The Use of Data Mining and Neural Networks for Forecasting Stock Market Returns, Expert Systems with Applications”, 29(4), pp.927-940.
  • Fischer, T.- Krauss, C. (2018), “Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions”, European Journal of Operational Research (270), pp.654-669.
  • Ghosh, I.- Sanyal, M. K.- Jana, R. K. (2018), “Fractal Inspection and Machine Learning-Based Predictive Modelling Framework for Financial Markets”, Arabian Journal for Science and Engineering, 43(8), pp.4273-4287.
  • Horning, N. (2010), Random Forests: “An Algorithm for Image Classification and Generation of Continuous Fields Data Sets”, International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 2010, Osaka.
  • İşgüden Kılıç, B. (2019), “Muhasebe, Finans ve Denetim Alanlarında Ön Plana Çıkan Büyük Veri Analiz Teknikleri ve Teknolojileri”, Uluslararası Yönetim, Ekonomi ve Politika Kongresi (pp. 498-511), İstanbul: ICOMEP.
  • Ünvan, Y. A.- Tatlıdil, H. (2011), “Türk Bankacılık Sektörünün Çok Değişkenli İstatistiksel Yöntemler İle İncelenmesi”, Ege Akademik Bakış, 11(Özel Sayı), pp.29-40.
  • Jabeur, S. B.- Fahmi, Y. (2018), “Forecasting Financial Distress for French Firms: A Comparative Study”, Empirical Economics (54), pp.1173-1186.
  • Jareño, Á. J.- Valero, B. E.- Pavía, J. M. (2017), “Using Machine Learning for Financial Fraud Detection in The Accounts of Companies Investigated for Money Laundering”, Castellón: Economics Department, Universitat Jaume.
  • Karakoç, İ. (2020), “Yeniden Değerleme Oranı Uygulaması ve Vergisel Etkileri”, Mali Çözüm, 30(159), pp.251-260.
  • Kazem, A.- Sharifi, E.- Hussain, F. K.- Saberi, M.- Hussain, O. K. (2013), “Support Vector Regression with Chaos-Based Firefly Algorithm for Stock Market Price Forecasting”, Applied Soft Computing, 13(2), pp.947-958.
  • Kulalı, İ. (2016), “Altman Z-Skor Modelinin BİST Şirketlerinin Finansal Başarısızlık Riskinin Tahmin Edilmesinde Uygulanması”, Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(27), pp.283-291.
  • Kurtaran Çelik, M. (2010), “Bankaların Finansal Başarısızlıklarının Geleneksel ve Yeni Yöntemlerle Öngörüsü”, Yönetim ve Ekonomi, 17(2), pp.129-143.
  • Lee, T. K., Cho, J. H., Kwon, D. S., & Sohn, S. Y. (2019), “Global Stock Market Investment Strategies Based on Financial Network Indicators Using Machine Learning Techniques”, Expert Systems with Applications (117), pp.228-242.
  • Liaw, A. - Wiener, M. (2002), “Classification and Regression by Random Forest”, R News, 2(3), pp.18-22. Lin, T. H. (2009), “A Cross Model Study of Corporate Financial Distress Prediction in Taiwan: Multiple Discriminant Analysis, Logit, Probit and Neural Networks Models”, Neurocomputing, 72(16), pp.3507-3516.
  • Mahfoud, S.- Mani, G. (1996), “Financial Forecasting Using Genetic Algorıthms”, Applied Artificial Intelligence (10), pp.543-565.
  • Nami, S.- Shajari, M. (2018), “Cost-Sensitive Payment Card Fraud Detection Based on Dynamic Random Forest and K-Nearest Neighbors”, Expert Systems with Applications (110), pp.381-392.
  • Özkan, G.- İnal, M. (2014), “Comparison of Neural Network Application for Fuzzy and ANFIS Approaches for Multi-Criteria Decision-Making Problems”, Applied Soft Computing (24), ss.232-238.
  • Penman, S. H. (2010), “Financial Forecasting, Risk and Valuation: Accounting for the Future”, Journal of Accounting, Finance and Business Studies, 46(2), pp.211-228.
  • Petek, A.- Şanlı, O. (2019), “Türkiye’de Gayrisafi̇ Yurtiçi Hasıla, Döviz Kurları ve Sanayi̇ Üretim Endeksinin Kapasite Kullanım Oranları Üzerine Etkileri: Zaman Serileri Analizi”, International Review of Economics and Management, 7(1), pp.9-73.
  • Rose, P. S.- Andrews, W. T.- Giroux, G. A. (1982), “Predicting Business Failure: A Macroeconomic Perspective”, Journal of Accounting, Auditing and Finance, 6(1), pp.20-31.
  • Rustam, Z.- Saragih, G. S. (2018), “Predicting Bank Financial Failures Using Random Forest”, International Workshop on Big Data and Information Security (IWBIS) (pp. 81-86). Institute of Electrical and Electronics Engineers.
  • Sağlam, N. (2020), “Örnklerle Tekdüzen Hesap Planı”, Ankara: Muhasebe Kitapları İnternet Yayıncılık. Springate, G. L. (1978), “Predicting the Possibility of Failure in a Canadian Firm”, Doctoral Dissertation, Simon Fraser University.
  • Terzi, S. (2011), “Finansal Rasyolar Yardımıyla Finansal Başarısızlık Tahmini: Gıda Sektöründe Ampirik Bir Araştırma”, Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(1), pp.1-18.
  • Weber, M.- Domeniconi, G.- Chen, J.- Weidele, D. K.- Bellei, C.- Robinson, T.- Leiserson, C. E. (2019), “Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics”, KDD ’19 Workshop on Anomaly Detection in Finance, Anchorage: KDD.
  • Xiong, S. Y.- Lu, C.- Chang, L.- Xie, A. R. (2019), “Impact Analysis of Financial Early Warning Indicators Based on Random Forest. International Conference on Information Technology”, Electrical and Electronic Engineering (pp. 701-706), Sanya: DEStech Transactions on Computer Science and Engineering.
  • Xuan, S.- Liu, G.- Li, Z.- Zheng, L.- Wang, S.- Jiang, C. (2018), “Random Forest for Credit Card Fraud Detection”, IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Institute of Electrical and Electronics Engineers.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İşletme
Bölüm Araştırma Makalesi
Yazarlar

Abdullah Orhan 0000-0002-3011-3984

Necdet Saglam 0000-0001-5747-9903

Yayımlanma Tarihi 14 Temmuz 2023
Gönderilme Tarihi 21 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 99

Kaynak Göster

APA Orhan, A., & Saglam, N. (2023). İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği. Muhasebe Ve Finansman Dergisi(99), 171-194. https://doi.org/10.25095/mufad.1254043
AMA Orhan A, Saglam N. İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği. Muhasebe ve Finansman Dergisi. Temmuz 2023;(99):171-194. doi:10.25095/mufad.1254043
Chicago Orhan, Abdullah, ve Necdet Saglam. “İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği”. Muhasebe Ve Finansman Dergisi, sy. 99 (Temmuz 2023): 171-94. https://doi.org/10.25095/mufad.1254043.
EndNote Orhan A, Saglam N (01 Temmuz 2023) İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği. Muhasebe ve Finansman Dergisi 99 171–194.
IEEE A. Orhan ve N. Saglam, “İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği”, Muhasebe ve Finansman Dergisi, sy. 99, ss. 171–194, Temmuz 2023, doi: 10.25095/mufad.1254043.
ISNAD Orhan, Abdullah - Saglam, Necdet. “İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği”. Muhasebe ve Finansman Dergisi 99 (Temmuz 2023), 171-194. https://doi.org/10.25095/mufad.1254043.
JAMA Orhan A, Saglam N. İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği. Muhasebe ve Finansman Dergisi. 2023;:171–194.
MLA Orhan, Abdullah ve Necdet Saglam. “İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği”. Muhasebe Ve Finansman Dergisi, sy. 99, 2023, ss. 171-94, doi:10.25095/mufad.1254043.
Vancouver Orhan A, Saglam N. İşletmelerde Finansal Kestirim Ve Bir Uygulama Önerisi: Rassal Orman Tekniği. Muhasebe ve Finansman Dergisi. 2023(99):171-94.