Araştırma Makalesi
BibTex RIS Kaynak Göster

BİRİM FAV-JERRY DAĞILIMI: ÖZELLİKLER VE UYGULAMALAR

Yıl 2025, Cilt: 11 Sayı: 1, 11 - 17, 30.06.2025
https://doi.org/10.22531/muglajsci.1600995

Öz

Bu makale yeni bir sınırlı istatistiksel dağılım sunmakta ve grafik gösterimler kullanılarak gösterilen kümülatif dağılım, olasılık yoğunluğu ve tehlike oranı fonksiyonları dahil olmak üzere temel özelliklerini araştırmaktadır. Çalışmada momentler, çarpıklık, basıklık, Bonferroni ve Lorenz eğrileri ve sıra istatistikleri gibi matematiksel özellikler incelenmektedir. Yeni modellerin bilinmeyen parametrelerine ilişkin tahminciler, Monte Carlo simülasyonlarında performans bias, ortalama karesel hatalar, ortalama mutlak bias ve ortalama bağıl hata üzerinden değerlendiriliyor. Son olarak, yeni modelin pratik uygulanabilirliği, iki gerçek veri analizi aracılığıyla gösterilmektedir.

Kaynakça

  • Attia, I. M., “A Novel Unit Distribution Named as Median Based Unit Rayleigh (MBUR): Properties and Estimations”, arXiv preprint arXiv:2410.04132, 2024.
  • Maya, R., Jodra, P., Irshad, M. R. and Krishna, A., “The Unit Muth Distribution: Statistical Properties and Applications”, Ricerche di Matematica, 73, 4, 1843–1866, 2024.
  • Muhammad, M., Abba, B., Xiao, J., Alsadat, N., Jamal, F. and Elgarhy, M., “A New Three-Parameter Flexible Unit Distribution and Its Quantile Regression Model”, IEEE Access, 12, 156235–156251, 2024.
  • Ragab, I. E., Alsadat, N., Balogun, O. S. and Elgarhy, M., “Unit Extended Exponential Distribution with Applications”, Journal of Radiation Research and Applied Sciences, 17, 4, 101118, 2024.
  • Ristić, M. M. and Nadarajah, S., “A New Lifetime Distribution”, Journal of Statistical Computation and Simulation, 84, 1, 135–150, 2014.
  • Hashem, A. F. and Alyami, S. A., “Inference on a New Lifetime Distribution under Progressive Type II Censoring for a Parallel‐Series Structure”, Complexity, 1, 6684918, 2021.
  • Karakaya, K., Kınacı, İ., Kuş, C. and Akdoğan, Y., “A New Distribution with Four Parameters: Properties and Applications”, Sigma Journal of Engineering and Natural Sciences, 41, 2, 276–287, 2023.
  • Ekemezie, D. F. N. and Obulezi, O. J., “The Fav-Jerry Distribution: Another Member in the Lindley Class with Applications”, Earthline Journal of Mathematical Sciences, 14, 4, 793–816, 2024.
  • Bonferroni, C., Elmenti di Statistica Generale [Elements of General Statistics], Libreria Seber, Firenze, 1930.
  • Varadhan, R., “Numerical Optimization in R: Beyond Optim”, Journal of Statistical Software, 60, 1, 1–3, 2014.
  • Mazucheli, J., Menezes, A. F. B., Fernandes, L. B., de Oliveira, R. P. and Ghitany, M. E., “The Unit-Weibull Distribution as an Alternative to the Kumaraswamy Distribution for the Modeling of Quantiles Conditional on Covariates”, Journal of Applied Statistics, 47, 6, 954–974, 2020.
  • Mazucheli, J., Menezes, A. F. B. and Chakraborty, S., “On the One Parameter Unit-Lindley Distribution and Its Associated Regression Model for Proportion Data”, Journal of Applied Statistics, 46, 4, 700–714, 2019.
  • Krishna, A., Maya, R., Chesneau, C. and Irshad, M. R., “The Unit Teissier Distribution and Its Applications”, Mathematical and Computational Applications, 27, 1, 12, 2022.
  • Altun, E. and Cordeiro, G. M., “The Unit-Improved Second-Degree Lindley Distribution: Inference and Regression Modeling”, Computational Statistics, 35, 259–279, 2020.
  • Yousof, H. M., Alizadeh, M., Jahanshahi, S. M. A., Ghosh, T. G. R. I. and Hamedani, G. G., “The Transmuted Topp-Leone G Family of Distributions: Theory, Characterizations and Applications”, Journal of Data Science, 15, 4, 723–740, 2017.
  • Saraçoğlu, B. and Tanış, C., “A New Statistical Distribution: Cubic Rank Transmuted Kumaraswamy Distribution and Its Properties”, Journal of the National Science Foundation of Sri Lanka, 46, 4, 505–518, 2018.
  • Sağlam, Ş. and Karakaya, K., “An Alternative Bounded Distribution: Regression Model and Applications”, The Journal of Supercomputing, 80, 14, 20861–20890, 2024.

UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS

Yıl 2025, Cilt: 11 Sayı: 1, 11 - 17, 30.06.2025
https://doi.org/10.22531/muglajsci.1600995

Öz

This paper introduces a novel bounded statistical distribution and explores its key characteristics, including cumulative distribution, probability density, and hazard rate functions, illustrated using graphical representations. The study examines mathematical properties such as moments, skewness, kurtosis, the Bonferroni and Lorenz curves, and order statistics. Estimators for the unknown parameter of new models are assessed, with performance evaluated via bias, mean square errors, average absolute bias, and mean relative error in Monte Carlo simulations. Finally, the practical utility of the new model is demonstrated through two real data analyses.

Kaynakça

  • Attia, I. M., “A Novel Unit Distribution Named as Median Based Unit Rayleigh (MBUR): Properties and Estimations”, arXiv preprint arXiv:2410.04132, 2024.
  • Maya, R., Jodra, P., Irshad, M. R. and Krishna, A., “The Unit Muth Distribution: Statistical Properties and Applications”, Ricerche di Matematica, 73, 4, 1843–1866, 2024.
  • Muhammad, M., Abba, B., Xiao, J., Alsadat, N., Jamal, F. and Elgarhy, M., “A New Three-Parameter Flexible Unit Distribution and Its Quantile Regression Model”, IEEE Access, 12, 156235–156251, 2024.
  • Ragab, I. E., Alsadat, N., Balogun, O. S. and Elgarhy, M., “Unit Extended Exponential Distribution with Applications”, Journal of Radiation Research and Applied Sciences, 17, 4, 101118, 2024.
  • Ristić, M. M. and Nadarajah, S., “A New Lifetime Distribution”, Journal of Statistical Computation and Simulation, 84, 1, 135–150, 2014.
  • Hashem, A. F. and Alyami, S. A., “Inference on a New Lifetime Distribution under Progressive Type II Censoring for a Parallel‐Series Structure”, Complexity, 1, 6684918, 2021.
  • Karakaya, K., Kınacı, İ., Kuş, C. and Akdoğan, Y., “A New Distribution with Four Parameters: Properties and Applications”, Sigma Journal of Engineering and Natural Sciences, 41, 2, 276–287, 2023.
  • Ekemezie, D. F. N. and Obulezi, O. J., “The Fav-Jerry Distribution: Another Member in the Lindley Class with Applications”, Earthline Journal of Mathematical Sciences, 14, 4, 793–816, 2024.
  • Bonferroni, C., Elmenti di Statistica Generale [Elements of General Statistics], Libreria Seber, Firenze, 1930.
  • Varadhan, R., “Numerical Optimization in R: Beyond Optim”, Journal of Statistical Software, 60, 1, 1–3, 2014.
  • Mazucheli, J., Menezes, A. F. B., Fernandes, L. B., de Oliveira, R. P. and Ghitany, M. E., “The Unit-Weibull Distribution as an Alternative to the Kumaraswamy Distribution for the Modeling of Quantiles Conditional on Covariates”, Journal of Applied Statistics, 47, 6, 954–974, 2020.
  • Mazucheli, J., Menezes, A. F. B. and Chakraborty, S., “On the One Parameter Unit-Lindley Distribution and Its Associated Regression Model for Proportion Data”, Journal of Applied Statistics, 46, 4, 700–714, 2019.
  • Krishna, A., Maya, R., Chesneau, C. and Irshad, M. R., “The Unit Teissier Distribution and Its Applications”, Mathematical and Computational Applications, 27, 1, 12, 2022.
  • Altun, E. and Cordeiro, G. M., “The Unit-Improved Second-Degree Lindley Distribution: Inference and Regression Modeling”, Computational Statistics, 35, 259–279, 2020.
  • Yousof, H. M., Alizadeh, M., Jahanshahi, S. M. A., Ghosh, T. G. R. I. and Hamedani, G. G., “The Transmuted Topp-Leone G Family of Distributions: Theory, Characterizations and Applications”, Journal of Data Science, 15, 4, 723–740, 2017.
  • Saraçoğlu, B. and Tanış, C., “A New Statistical Distribution: Cubic Rank Transmuted Kumaraswamy Distribution and Its Properties”, Journal of the National Science Foundation of Sri Lanka, 46, 4, 505–518, 2018.
  • Sağlam, Ş. and Karakaya, K., “An Alternative Bounded Distribution: Regression Model and Applications”, The Journal of Supercomputing, 80, 14, 20861–20890, 2024.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Olasılık Teorisi, Uygulamalı İstatistik
Bölüm Araştırma Makalesi
Yazarlar

Kadir Karakaya 0000-0002-0781-3587

Şule Sağlam 0000-0002-1851-8217

Gönderilme Tarihi 13 Aralık 2024
Kabul Tarihi 19 Mart 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Karakaya, K., & Sağlam, Ş. (2025). UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS. Mugla Journal of Science and Technology, 11(1), 11-17. https://doi.org/10.22531/muglajsci.1600995
AMA Karakaya K, Sağlam Ş. UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS. MJST. Haziran 2025;11(1):11-17. doi:10.22531/muglajsci.1600995
Chicago Karakaya, Kadir, ve Şule Sağlam. “UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS”. Mugla Journal of Science and Technology 11, sy. 1 (Haziran 2025): 11-17. https://doi.org/10.22531/muglajsci.1600995.
EndNote Karakaya K, Sağlam Ş (01 Haziran 2025) UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS. Mugla Journal of Science and Technology 11 1 11–17.
IEEE K. Karakaya ve Ş. Sağlam, “UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS”, MJST, c. 11, sy. 1, ss. 11–17, 2025, doi: 10.22531/muglajsci.1600995.
ISNAD Karakaya, Kadir - Sağlam, Şule. “UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS”. Mugla Journal of Science and Technology 11/1 (Haziran2025), 11-17. https://doi.org/10.22531/muglajsci.1600995.
JAMA Karakaya K, Sağlam Ş. UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS. MJST. 2025;11:11–17.
MLA Karakaya, Kadir ve Şule Sağlam. “UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS”. Mugla Journal of Science and Technology, c. 11, sy. 1, 2025, ss. 11-17, doi:10.22531/muglajsci.1600995.
Vancouver Karakaya K, Sağlam Ş. UNIT FAV-JERRY DISTRIBUTION: PROPERTIES AND APPLICATIONS. MJST. 2025;11(1):11-7.

8805
Mugla Journal of Science and Technology (MJST) dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.