Araştırma Makalesi
BibTex RIS Kaynak Göster

A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA

Yıl 2022, Cilt: 8 Sayı: 2, 9 - 15, 30.12.2022
https://doi.org/10.22531/muglajsci.1128319

Öz

Literatürde Alzaatreh ve diğerleri [10] çalışmalarında genelleştirilmiş Weibull-X dağılım ailesini önermişlerdir. Önerilen dağılımdan yararlanarak, bu çalışmada yeni bir Weibull-Lindley (NWL) dağılımı geliştirilmiştir. Olasılık yoğunluk, dağılım, yaşam, hazard ve kantil fonksiyonları, mod, medyan, Shannon entropisi, çarpıklık ve basıklık katsayıları, sıralı istatistikleri gibi birçok matematiksel özellik de elde edilmiştir. Maksimum olabilirlik yöntemine göre parametre tahmini yapılmıştır. Uygulama kısmında gerçek veri setlerini kullanılmış ve önerilen NWL dağılımımız Akash, Lindley, New Weibull-F, iki parametreli Lindley (TPL) ve Weibull-Lindley (WL) dağılımları ile karşılaştırıldığında daha iyi sonuçların elde edildiği görülmüştür.

Kaynakça

  • Alzaghal, A., Lee, C. and Famoye, F., “Exponentiated T–X Family of Distributions with Some Applications”, International Journal Probability and Statistics, 2, 31–49, 2013.
  • Azzalini, A. and Capitanio, A., “Distributions Generated by Perturbation of Symmetry with Emphasis on a Multivariate Skew t Distribution”, Journal of the Royal Statistical Society B, 65, 367-389, 2003.
  • Gupta, R.C., Gupta, P.I. and Gupta, R.D., “Modeling Failure Time Data by Lehmann Alternatives”, Communications in Statistics–Theory and Method, 27, 887–904, 1998.
  • Azzalini, A., “A Class of Distributions which Includes the Normal Ones”, Scandinavian Journal of Statistics, 12, 171–178, 1985.
  • Marshall, A.N. and Olkin, I., “A New Method for Adding a Parameter to a Family of Distributions with Applications to the Exponential and Weibull Families”, Biometrika, 84, 641–652, 1997.
  • Eugene, N., Lee, C. and Famoye, F., “Beta-Normal Distribution and its Applications”, Communications in Statistics–Theory and Methods, 31, 497–512, 2002.
  • Jones, M.C., “Families of Distributions Arising from the Distributions of Order Statistics”, Test, 13, 1–43, 2004.
  • Alexander, C., Cordeiro, G.M., Ortega, E.M.M. and Sarabia, J.M., “Generalized Beta-Generated Distributions”, Computational Statistics and Data Analysis, 56, 1880–1897, 2012.
  • Cordeiro, G.M. and De Castro, M., “A New Family of Generalized Distributions”, Journal of Statistical Computation and Simulation, DOI: 10.1080/0094965YY, 2011.
  • Alzaatreh, A., Lee, C. and Famoye, F., “A New Method for Generating Families of Continuous Distributions”, Metron, 71(1), 63-79, 2013.
  • Ghitany, M.E., Atieh, B. and Nadarajah, S., “Lindley Distribution and its Application”, Mathematics Computing and Simulation, 78, 493 – 506, 2008.
  • Marinho, P.R.D, Diaz, C.R.D. and Bourguignon, M., “AdequacyModel: An R Package for Modeling Probability Distributions and General Optimization”, URL htttp//www.rproject.org, 2016.
  • Galton, F., Enquiries into Human Faculty and its Development, Macmillan & Company, London, 1883.
  • Moors, J.J., “A Quantile Alternative for Kurtosis”, Journal of the Royal Statistical Society, 37, 25–32, 1988.
  • Hanagal, D.D., Modeling Survival Data Using Frailty Models, Chapman & Hall: New York, 2019.
  • Gross, A.J. and Clark, V.A. Survival Distributions: Reliability Applications in the Biometrical Sciences, John Wiley, New York, 1975.
  • Lee, E.T. and Wang, W. Statistical Methods for Survival data Analysis, Third Edition: John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
  • Shanker, R., Kamlesh, K.K. and Fesshaye H., “A Two Parameter Lindley Distribution: Its Properties and Applications”, Biostatistics and Biometrics Open Access Journal, 1(4), 555-570, 2017.

YAŞAM VERİLERİNİN MODELLENMESİ İÇİN YENİ WEIBULL-LINDLEY DAĞILIMI

Yıl 2022, Cilt: 8 Sayı: 2, 9 - 15, 30.12.2022
https://doi.org/10.22531/muglajsci.1128319

Öz

Literatürde Alzaatreh ve diğerleri [10] çalışmalarında genelleştirilmiş Weibull-X dağılım ailesini önermişlerdir. Önerilen dağılımdan yararlanarak, bu çalışmada yeni bir Weibull-Lindley (NWL) dağılımı geliştirilmiştir. Olasılık yoğunluk, dağılım, yaşam, hazard ve kantil fonksiyonları, mod, medyan, Shannon entropisi, çarpıklık ve basıklık katsayıları, sıralı istatistikleri gibi birçok matematiksel özellik de elde edilmiştir. Maksimum olabilirlik yöntemine göre parametre tahmini yapılmıştır. Uygulama kısmında gerçek veri setlerini kullanılmış ve elde edilen sonuçlara göre, önerilen NWL dağılımımız Akash, Lindley, New Weibull-F, iki parametreli Lindley (TPL) ve Weibull-Lindley (WL) dağılımları ile karşılaştırıldığında daha üstün olduğu sonucuna ulaşılmıştır.

Kaynakça

  • Alzaghal, A., Lee, C. and Famoye, F., “Exponentiated T–X Family of Distributions with Some Applications”, International Journal Probability and Statistics, 2, 31–49, 2013.
  • Azzalini, A. and Capitanio, A., “Distributions Generated by Perturbation of Symmetry with Emphasis on a Multivariate Skew t Distribution”, Journal of the Royal Statistical Society B, 65, 367-389, 2003.
  • Gupta, R.C., Gupta, P.I. and Gupta, R.D., “Modeling Failure Time Data by Lehmann Alternatives”, Communications in Statistics–Theory and Method, 27, 887–904, 1998.
  • Azzalini, A., “A Class of Distributions which Includes the Normal Ones”, Scandinavian Journal of Statistics, 12, 171–178, 1985.
  • Marshall, A.N. and Olkin, I., “A New Method for Adding a Parameter to a Family of Distributions with Applications to the Exponential and Weibull Families”, Biometrika, 84, 641–652, 1997.
  • Eugene, N., Lee, C. and Famoye, F., “Beta-Normal Distribution and its Applications”, Communications in Statistics–Theory and Methods, 31, 497–512, 2002.
  • Jones, M.C., “Families of Distributions Arising from the Distributions of Order Statistics”, Test, 13, 1–43, 2004.
  • Alexander, C., Cordeiro, G.M., Ortega, E.M.M. and Sarabia, J.M., “Generalized Beta-Generated Distributions”, Computational Statistics and Data Analysis, 56, 1880–1897, 2012.
  • Cordeiro, G.M. and De Castro, M., “A New Family of Generalized Distributions”, Journal of Statistical Computation and Simulation, DOI: 10.1080/0094965YY, 2011.
  • Alzaatreh, A., Lee, C. and Famoye, F., “A New Method for Generating Families of Continuous Distributions”, Metron, 71(1), 63-79, 2013.
  • Ghitany, M.E., Atieh, B. and Nadarajah, S., “Lindley Distribution and its Application”, Mathematics Computing and Simulation, 78, 493 – 506, 2008.
  • Marinho, P.R.D, Diaz, C.R.D. and Bourguignon, M., “AdequacyModel: An R Package for Modeling Probability Distributions and General Optimization”, URL htttp//www.rproject.org, 2016.
  • Galton, F., Enquiries into Human Faculty and its Development, Macmillan & Company, London, 1883.
  • Moors, J.J., “A Quantile Alternative for Kurtosis”, Journal of the Royal Statistical Society, 37, 25–32, 1988.
  • Hanagal, D.D., Modeling Survival Data Using Frailty Models, Chapman & Hall: New York, 2019.
  • Gross, A.J. and Clark, V.A. Survival Distributions: Reliability Applications in the Biometrical Sciences, John Wiley, New York, 1975.
  • Lee, E.T. and Wang, W. Statistical Methods for Survival data Analysis, Third Edition: John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.
  • Shanker, R., Kamlesh, K.K. and Fesshaye H., “A Two Parameter Lindley Distribution: Its Properties and Applications”, Biostatistics and Biometrics Open Access Journal, 1(4), 555-570, 2017.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ceren Ünal 0000-0002-9357-1771

Gamze Özel 0000-0003-3886-3074

Erken Görünüm Tarihi 2 Kasım 2022
Yayımlanma Tarihi 30 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 2

Kaynak Göster

APA Ünal, C., & Özel, G. (2022). A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA. Mugla Journal of Science and Technology, 8(2), 9-15. https://doi.org/10.22531/muglajsci.1128319
AMA Ünal C, Özel G. A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA. MJST. Aralık 2022;8(2):9-15. doi:10.22531/muglajsci.1128319
Chicago Ünal, Ceren, ve Gamze Özel. “A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA”. Mugla Journal of Science and Technology 8, sy. 2 (Aralık 2022): 9-15. https://doi.org/10.22531/muglajsci.1128319.
EndNote Ünal C, Özel G (01 Aralık 2022) A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA. Mugla Journal of Science and Technology 8 2 9–15.
IEEE C. Ünal ve G. Özel, “A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA”, MJST, c. 8, sy. 2, ss. 9–15, 2022, doi: 10.22531/muglajsci.1128319.
ISNAD Ünal, Ceren - Özel, Gamze. “A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA”. Mugla Journal of Science and Technology 8/2 (Aralık 2022), 9-15. https://doi.org/10.22531/muglajsci.1128319.
JAMA Ünal C, Özel G. A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA. MJST. 2022;8:9–15.
MLA Ünal, Ceren ve Gamze Özel. “A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA”. Mugla Journal of Science and Technology, c. 8, sy. 2, 2022, ss. 9-15, doi:10.22531/muglajsci.1128319.
Vancouver Ünal C, Özel G. A NEW WEIBULL-LINDLEY DISTRIBUTION IN MODELLING LIFETIME DATA. MJST. 2022;8(2):9-15.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.