Araştırma Makalesi
BibTex RIS Kaynak Göster

Dogal Yollar ile Ananasın Kurutulmasının Deneysel ve Teorik Olarak Araştırılması

Yıl 2022, , 314 - 332, 09.06.2022
https://doi.org/10.46399/muhendismakina.1004491

Öz

Kurutma farklı sektörlerde kullanılan enerjisi oldukça yoğun bir işlemdir. Ürünlerin hasat edildikten sonra bile solunumları devam ettiği için çok çabuk bozulabilmektedir. Ürünlerin çürümesini engelleyip daha uzun süre kullanımını sağlamak için farklı yöntemler uygulanmakta ve araştırılmaktadır. Kurutmada bu yöntemlerden biridir. Kurutma işlemi en temel anlamıyla ürünlerden nemin uzaklaştırılmasıdır. Geleneksel kurutma yöntemi olan tarımsal ürünlerin güneşte kurutulması çok eski dönemlerden beri uygulanmaktadır. Ancak kullanılan bu yöntem açık havada olması sebebi ile ürünlerde hijyen sorunu oluşturmaktadır. Dolayısıyla ürün kalitesinde ciddi düşüş yaşanmaktadır. Sıcak hava ile tarım ürünlerinin kurutulması işlemi düşük enerji verimine ve uzun kuruma süresine sahip bir yöntem olduğundan yeni teknolojiler araştırılmaktadır. Yapılan birçok çalışmalar sonucunda kurutma işleminde en çok istenilen özellikler; kuruma süresinin kısa olması, kurutma işlemi boyunca enerjinin daha verimli kullanılması, yüksek kalitede ürün üretimine olanak sağlanması, işlem boyunca ihtiyaç duyulan alanın az olması olarak belirlenmiştir ve bunlara uygun sistemler tasarlanmıştır. Bu çalışmada aynı büyüklüklerde dilimlenen 100gr ananasların 45oC sabit sıcaklıktaki ısıtıcıyla ve ortalama 22.7oC oda sıcaklığında kurutma işlemi gerçekleştirilmiştir. İlk günün sonunda 100gr ananastan düzenli aralıklarla ölçümler yapılmış olup 5 günün sonunda kurutulan cismin ağırlığının 12.35gr’a düştüğü, toplamda 87.65gr azaldığı yapılan deneylerle belirlenmiştir. Veriler doğrultusunda kurutma süresi boyunca kurutulan cismin Nem Oranı ve nem içeriği ölçümün yapıldığı her bir saat için ayrı ayrı hesaplanıp grafiğe dökülmüştür.

Kaynakça

  • Atalay H. 2015. “Güneş enerjisi destekli enerji depolama sistemli kurutma sisteminde elma kurutulmasının incelenmesi”, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Makina Mühendisliği Anabilim Dalı, İstanbul.
  • Mahesh, K., Sansaniwal, S., Khatak, P. 2016. “Progress in solar dryers for drying various commodities”, Renewable and Sustainable Energy Reviews; 346-360.
  • Akyurt M., Sevilir E., Selçuk K. 1971. “Güneş enerjisi ve bazı yakıtlarla meyve ve sebze kurutulması”, Tarım ve Ormancılık Araştırma Grubu, Proje no: TOAG-97, Ankara.
  • Güngör A., Özbalta N. 2019. “Güneş enerjili kurutma teknolojileri ve uygulamalarda gelişmeler”, 8. Güneş Enerjisi Sempozyumu ve Sergisi, TMMOB Makine Mühendisleri Odası, https://www.mmo.org.tr/8-gunes-enerjisi-sistemleri-sempozyumu-ve-sergisi/bildiriler-kitabi.
  • Karaaslan, S., Sarı, M. 2014. “Ananasın mikrodalga ile kurutulması ve uygun kuruma modelinin belirlenmesi”, Ziraat Fakültesi Dergisi, 1, 42 – 50.
  • Ananas, Vikipedia, https://tr.wikipedia.org/wiki/Ananas, Erişim Tarihi:18.02.2021.
  • Nabavi, S., Silva, A. (Editors). 2018. “Nonvitamin and nonmineral nutritional supplements”, eBook ISBN: 9780128125632,Paperback ISBN: 9780128124918, 1st Edition.
  • Silva, V., Costa, J. J., Figueiredo, A. R., Nunes, J., Nunes, C., Ribeiro, T. I. B. ve Pereira, B. 2016. “Study of three-stage intermittent drying of pears considering shrinkage and variable diffusion coefficient”, Journal of Food Engineering, 180, 77-86.
  • Sonmete, M. H., Mengeş, H. O., Ertekin, C. ve Özcan, M. M. 2016. “Mathematical modeling of thin layer drying of carrot slices by forced convection”, Journal of Food Measurement and Characterization, 11, 629-638.
  • Pestaño, L. D. B., Bautista, J. P. T., Leguiab, R. J. R. H., Puri, S. D. D. 2018. “Mathematical modeling of the drying kinetics of thinly-sliced Saba (Musa Balbasiana) using hot-air dryer”, MATEC Web of Conferences, 156, 02004.
  • Rodriguez, O., Gomes, W., Rodrigues, S. ve Fernandes, F. A. 2017. “Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple”, Ultrason Sonochem, 35 (2017), 92-102.
  • Talens, C., Arboleya, J. C., Castro-Giraldez, M. ve Fito, P. J. 2017. “Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel”, LWT- Food Science and Technology, 77, 110-118.
  • Torki-Harchegani, M., Ghanbarian, D., Maghsoodi, V. ve Moheb, A. 2016. “Infrared thin layer drying of saffron (Crocus sativus L) stigmas: Mass transfer parameters and quality assessment”, Chinese Journal of Chemical Engineering, 15(4), 426-432.
  • Zielinska, M. ve Markowski, M. 2016. “The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.)”, Food Chemistry, 196, 1188-1196.
  • Tao, Y., Wang, P., Wang, Y., Kadam, S. U., Han, Y., Wang, J. ve Zhou, J. 2016. “Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties”, Ultrason Sonochem, 31, 310-318.
  • Jiang, J., Dang, L., Yuensin, C., Tan, H., Pan, B. ve Wei, H. 2017. “Simulation of microwave thin layer drying process by a new theoretical model”, Chemical Engineering Science, 162, 69-76.
  • Lenaerts, S., Van Der Borght, M., Callens, A. ve Van Campenhout, L. 2018. “Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour”, Food Chemistry, 254, 129-136.
  • Orikasaa T., Koide S., Okamoto S., Imaizumi T., Muramatsud Y., Takeda J., Shiina T., Tagawa A. 2014. “Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices”, Journal of Food Engineering, 125,51-55. https://doi.org/10.1016/j.jfoodeng.2013.10.027
  • Xu, W., Song, C., Li, Z., Song, F., Hu, S., Li, J., Zhu, G. ve Vijaya Raghavan, G. S. 2018. “Temperaturea gradient control during microwave combined with hot air drying”, Biosystems Engineering, 169, 175-187.
  • Szadzinska, J., Lechtanska, J., Kowalski, S. J. ve Stasiak, M. 2017. “The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper”, Ultrason Sonochem, 34, 531-539.
  • Cuccurullo, G., Giordano, L., Metallo, A., Cinquanta, L. 2018. “Drying rate control in microwave assisted processing of sliced apples”, Biosystems Engineering, 170, 24-30.
  • Krokida, M. K., Maroulis, Z. 2000. “Quality changes during drying of food materials. Drying Technology in Agricultural and Food Sciences”, Science Publishers, Chapter Seven.
  • Monteiro, R. L., Carciofi, B. A. M., Marsaioli, A., Laurindo, J. B. 2015. “How to make a microwave vacuum dryer with turntable”, Journal of Food Engineering, 166, 276-284
  • Tian, Y., Zhao, Y., Huang, J., Zeng, H. ve Zheng, B. 2016. “Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms”, Food Chemistry, 197, 714-722.
  • Lv, H., Chen, X., Liu, X., Fang, C., Liu, H., Zhang, B., Fei, B. 2018. “The vacuum-assisted microwave drying of round bamboos: Drying kinetics, color and mechanical property”, Materials Letters, 223, 159-162.
  • Peters, B. H., Staels, L., Rantanen, J., Molnar, F., De Beer, T., Lehto, V. P. ve Ketolainen, J. 2016. “Effects of cooling rate in microscale and pilot scale freeze-drying - Variations in excipient polymorphs and protein secondary structure”, Eur J Pharm Sci, 95, 72-81.
  • Aktas, T., Fujii, S., Kawano, Y. ve Yamamoto, S. 2007. “Effects of pretreatments of sliced vegetables with trehalose on drying characteristics and quality of dried products”, Food and Bioproducts Processing, 85,178-183
  • Sadıkoğlu, H., Özdemir, M. 2003. “Dondurarak Kurutma Evreleri”, GIDA, 28, 643-649, https://dergipark.org.tr/tr/pub/gida/issue/6980/93044
  • Pei, F., Yang, W., Ma, N., Fang, Y., Zhao, L., An, X., Xin, Z. ve Hu, Q. 2016. “Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC–MS and electronic nose”, LWT - Food Science and Technology, 72, 343-350.

Experimental and Theoretical Investigation of Drying Pineapple By Natural Means

Yıl 2022, , 314 - 332, 09.06.2022
https://doi.org/10.46399/muhendismakina.1004491

Öz

Drying, used in various sectors, is a process, which needs quite a high amount of energy. Agricultural products can deteriorate quite rapidly as their respiration continues after the harvest. A number of different methods have been used and searched to prevent the products to deteriorate and make them be used for a long time after the harvest. Drying is one of these methods. With basic meaning, drying process is removing the moisture from the agricultural products. Drying the agricultural products under the sun, a conventional drying method, has been used since ancient times. However, when this method is conducted in the open air, hygiene problems with the products emerge. Thus, it leads to serious quality loss in the products. New technologies have been searched to dry the agricultural products with the help of hot air because this method has low energy needs and long drying period. At the end of many investigations carried out, the mostly preferred properties in drying process have been revealed to be short drying period, efficient energy use, providing high quality dried products, small area needed during process; therefore, systems compatible with these properties have been designed. In this study, the drying process of 100g pineapple pieces sliced in the same sizes was performed with the help of a heater at constant temperature of 45oC and at average room temperature of 22.7oC. From the first day until the last day of experiment, measurements of pineapple slices were carried out at regular intervals; and at the end of the fifth day, it was determined that the total weight of 100g pineapple dropped to 12.35gr, which meant that the weight of the product decreased 87.65g in total. In accordance with the data obtained, the moisture rate and moisture content of the dried product were measured at every hour during drying and calculated and shown on the graphs.

Kaynakça

  • Atalay H. 2015. “Güneş enerjisi destekli enerji depolama sistemli kurutma sisteminde elma kurutulmasının incelenmesi”, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Makina Mühendisliği Anabilim Dalı, İstanbul.
  • Mahesh, K., Sansaniwal, S., Khatak, P. 2016. “Progress in solar dryers for drying various commodities”, Renewable and Sustainable Energy Reviews; 346-360.
  • Akyurt M., Sevilir E., Selçuk K. 1971. “Güneş enerjisi ve bazı yakıtlarla meyve ve sebze kurutulması”, Tarım ve Ormancılık Araştırma Grubu, Proje no: TOAG-97, Ankara.
  • Güngör A., Özbalta N. 2019. “Güneş enerjili kurutma teknolojileri ve uygulamalarda gelişmeler”, 8. Güneş Enerjisi Sempozyumu ve Sergisi, TMMOB Makine Mühendisleri Odası, https://www.mmo.org.tr/8-gunes-enerjisi-sistemleri-sempozyumu-ve-sergisi/bildiriler-kitabi.
  • Karaaslan, S., Sarı, M. 2014. “Ananasın mikrodalga ile kurutulması ve uygun kuruma modelinin belirlenmesi”, Ziraat Fakültesi Dergisi, 1, 42 – 50.
  • Ananas, Vikipedia, https://tr.wikipedia.org/wiki/Ananas, Erişim Tarihi:18.02.2021.
  • Nabavi, S., Silva, A. (Editors). 2018. “Nonvitamin and nonmineral nutritional supplements”, eBook ISBN: 9780128125632,Paperback ISBN: 9780128124918, 1st Edition.
  • Silva, V., Costa, J. J., Figueiredo, A. R., Nunes, J., Nunes, C., Ribeiro, T. I. B. ve Pereira, B. 2016. “Study of three-stage intermittent drying of pears considering shrinkage and variable diffusion coefficient”, Journal of Food Engineering, 180, 77-86.
  • Sonmete, M. H., Mengeş, H. O., Ertekin, C. ve Özcan, M. M. 2016. “Mathematical modeling of thin layer drying of carrot slices by forced convection”, Journal of Food Measurement and Characterization, 11, 629-638.
  • Pestaño, L. D. B., Bautista, J. P. T., Leguiab, R. J. R. H., Puri, S. D. D. 2018. “Mathematical modeling of the drying kinetics of thinly-sliced Saba (Musa Balbasiana) using hot-air dryer”, MATEC Web of Conferences, 156, 02004.
  • Rodriguez, O., Gomes, W., Rodrigues, S. ve Fernandes, F. A. 2017. “Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple”, Ultrason Sonochem, 35 (2017), 92-102.
  • Talens, C., Arboleya, J. C., Castro-Giraldez, M. ve Fito, P. J. 2017. “Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel”, LWT- Food Science and Technology, 77, 110-118.
  • Torki-Harchegani, M., Ghanbarian, D., Maghsoodi, V. ve Moheb, A. 2016. “Infrared thin layer drying of saffron (Crocus sativus L) stigmas: Mass transfer parameters and quality assessment”, Chinese Journal of Chemical Engineering, 15(4), 426-432.
  • Zielinska, M. ve Markowski, M. 2016. “The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.)”, Food Chemistry, 196, 1188-1196.
  • Tao, Y., Wang, P., Wang, Y., Kadam, S. U., Han, Y., Wang, J. ve Zhou, J. 2016. “Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties”, Ultrason Sonochem, 31, 310-318.
  • Jiang, J., Dang, L., Yuensin, C., Tan, H., Pan, B. ve Wei, H. 2017. “Simulation of microwave thin layer drying process by a new theoretical model”, Chemical Engineering Science, 162, 69-76.
  • Lenaerts, S., Van Der Borght, M., Callens, A. ve Van Campenhout, L. 2018. “Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour”, Food Chemistry, 254, 129-136.
  • Orikasaa T., Koide S., Okamoto S., Imaizumi T., Muramatsud Y., Takeda J., Shiina T., Tagawa A. 2014. “Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices”, Journal of Food Engineering, 125,51-55. https://doi.org/10.1016/j.jfoodeng.2013.10.027
  • Xu, W., Song, C., Li, Z., Song, F., Hu, S., Li, J., Zhu, G. ve Vijaya Raghavan, G. S. 2018. “Temperaturea gradient control during microwave combined with hot air drying”, Biosystems Engineering, 169, 175-187.
  • Szadzinska, J., Lechtanska, J., Kowalski, S. J. ve Stasiak, M. 2017. “The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper”, Ultrason Sonochem, 34, 531-539.
  • Cuccurullo, G., Giordano, L., Metallo, A., Cinquanta, L. 2018. “Drying rate control in microwave assisted processing of sliced apples”, Biosystems Engineering, 170, 24-30.
  • Krokida, M. K., Maroulis, Z. 2000. “Quality changes during drying of food materials. Drying Technology in Agricultural and Food Sciences”, Science Publishers, Chapter Seven.
  • Monteiro, R. L., Carciofi, B. A. M., Marsaioli, A., Laurindo, J. B. 2015. “How to make a microwave vacuum dryer with turntable”, Journal of Food Engineering, 166, 276-284
  • Tian, Y., Zhao, Y., Huang, J., Zeng, H. ve Zheng, B. 2016. “Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms”, Food Chemistry, 197, 714-722.
  • Lv, H., Chen, X., Liu, X., Fang, C., Liu, H., Zhang, B., Fei, B. 2018. “The vacuum-assisted microwave drying of round bamboos: Drying kinetics, color and mechanical property”, Materials Letters, 223, 159-162.
  • Peters, B. H., Staels, L., Rantanen, J., Molnar, F., De Beer, T., Lehto, V. P. ve Ketolainen, J. 2016. “Effects of cooling rate in microscale and pilot scale freeze-drying - Variations in excipient polymorphs and protein secondary structure”, Eur J Pharm Sci, 95, 72-81.
  • Aktas, T., Fujii, S., Kawano, Y. ve Yamamoto, S. 2007. “Effects of pretreatments of sliced vegetables with trehalose on drying characteristics and quality of dried products”, Food and Bioproducts Processing, 85,178-183
  • Sadıkoğlu, H., Özdemir, M. 2003. “Dondurarak Kurutma Evreleri”, GIDA, 28, 643-649, https://dergipark.org.tr/tr/pub/gida/issue/6980/93044
  • Pei, F., Yang, W., Ma, N., Fang, Y., Zhao, L., An, X., Xin, Z. ve Hu, Q. 2016. “Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC–MS and electronic nose”, LWT - Food Science and Technology, 72, 343-350.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hevi Gizem Tekdal 0000-0002-4324-0923

Adem Yılmaz 0000-0001-7266-0866

Ayla Durmuş 0000-0001-5524-2734

Yayımlanma Tarihi 9 Haziran 2022
Gönderilme Tarihi 4 Ekim 2021
Kabul Tarihi 20 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Tekdal, H. G., Yılmaz, A., & Durmuş, A. (2022). Dogal Yollar ile Ananasın Kurutulmasının Deneysel ve Teorik Olarak Araştırılması. Mühendis Ve Makina, 63(707), 314-332. https://doi.org/10.46399/muhendismakina.1004491

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520