Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Resistance Spot Welding Parameters on Porosity Formation of the TWIP/Martensitic Steel Joints

Yıl 2022, , 415 - 428, 09.06.2022
https://doi.org/10.46399/muhendismakina.1022891

Öz

In this study, the porosity problem that occurs during the joining of TWIP and Martensitic steels, which are two important steels from the AHSS steel family, was investigated. The effects of welding current and welding duration on the formation of porosity were investigated. Macro and microscopic examination of the porosity was made and the amount of formation of the porosity as an area was graphically created in terms of welding parameters. According to the results, the amount of porosity increased as the welding time and welding current increased. The highest porosity amount was 16.2% in 30 period welding time and 12 kA welding current.

Kaynakça

  • Safanama, D.S., Marashi, S.P.H., Pouranvari, M. 2012. “Similar and dissimilar resistance spot welding of martensitic advanced high strength steel and low carbon steel: metallurgical characteristics and failure mode transition” , Science and Technology of Welding & Joining, vol.17, pp.288–294.
  • Cora, Ö.N., Koç, M. 2014. “Promises and Problems of Ultra/Advanced High Strength Steel (U/AHSS) Utilization in Automotive Industry” , 7th Automotive Technologies Congress (OTEKON 2014), pp.1–8.
  • Onar, V., Özen, F., Kekik, M., Aslanlar, Y.S., Özderin, Y., Aslan, H., et al. 2019. “Effect of current and welding time on tensile-peel strength of resistance spot welded TWIP 1000 and martensitic steels” , Indian Journal of Chemical Technology, vol.26,.
  • Macke, A., Schultz, B.F., Rohatgi, P. 2012. “Metal matrix: Composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance” , Advanced Materials and Processes, vol.170, pp.19–23.
  • Şahin, S., Hayat, F., Çölgeçen, O.C. 2021. “The effect of welding current on nugget geometry, microstructure and mechanical properties of TWIP steels in resistance spot welding” , Welding in the World, vol.65, pp.921–935.
  • Baluch, N. 2014. “Advanced High Strength Steel in Auto Industry : an Overview” , Engineering, Technology & Applied Science Research, vol.4, pp.686.
  • Pouranvari, M., Mousavizadeh, S.M. 2013. “Failure mode of M130 Martensitic Resistance Spot Welds” , Materiali in Tehnologije, vol.47, pp.771–776.
  • Venezuela, J., Liu, Q., Zhang, M., Zhou, Q., Atrens, A. 2015. “The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test” , Corrosion Science, vol.99, pp.98–117.
  • Cooman, B.C. De, Chin, K., Kim, J. n.d. “High Mn TWIP Steels for Automotive Applications.”
  • Rajinikanth, V., Mukherjee, K., Chowdhury, S.G., Schiebahn, a, Harms, A., Bleck, W., et al. 2013. “Mechanical property and microstructure of resistance spot welded twinning induced plasticity-dual phase steels joint” , Science and Technology of Welding and Joining, vol.18, pp.485–491.
  • Scott, C., Cugy, P. 2009. Vanadium additions in new ultra high strength and ductility steels. in: ArcelorMittal Res. Int. Symp. Automob. Steel”, pp. 211–221.
  • Wang, M.M., Tasan, C.C., Ponge, D., Dippel, A.C., Raabe, D. 2015. “Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance” , Acta Materialia, vol.85, pp.216–228.
  • Özen, F., Aslanlar, S. 2021. “Mechanical and microstructural evaluation of resistance spot welded dissimilar TWIP/martensitic steel joints” , The International Journal of Advanced Manufacturing Technology,.
  • Espinel Hernández, A., Sánchez Roca, A., Carvajal Fals, H., Antonio Ferraresi, V., Oliveira Vilarinho, L. 2016. “Influence of polarity on mechanical properties of dissimilar resistance spot welds of DP 600/AISI 304 steels” , Science and Technology of Welding and Joining, vol.21, pp.607–613.
  • Akkas, N. 2017. “Welding time effect on tensile-shear loading in resistance spot welding of SPA-H weathering steel sheets used in railway vehicles”, Acta Physica Polonica A, vol.131, pp.52–54.
  • Vijayan, V., Murugan, S.P., Ji, C., Son, S.-G., Park, Y.-D. 2021. “Factors affecting shrinkage voids in advanced high strength steel (AHSS) resistance spot welds” , Journal of Mechanical Science and Technology, vol.35, pp.1–6.
  • Vijayan, V., Murugan, S.P., Son, S.G., Park, Y. Do 2019. “Shrinkage Void Formation in Resistance Spot Welds: Its Effect on Advanced High-Strength-Steel Weld Strength and Failure Modes” , Journal of Materials Engineering and Performance, vol.28, pp.7514–7526.
  • Ji, C.W., Jo, I., Lee, H., Choi, I.D., do Kim, Y., Park, Y. Do 2014. “Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels” , Journal of Mechanical Science and Technology, vol.28, pp.4761–4769.
  • Joaquin, A., Elliott, A.N.A., Jiang, C. 2007. “Reducing shrinkage voids in resistance spot welds” , Welding Journal (Miami, Fla), vol.86, pp.24–27.
  • Yang, G., Zhu, F., Dong, S. 2011. “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn” , Journal of Crystal Growth, vol.316, pp.145–148.
  • Chu, J., Bao, Y., Li, X., Wang, M., Gao, F. 2021. “Kinetic study of Mn vacuum evaporation from Mn steel melts” , Separation and Purification Technology, vol.255, pp.117698.
  • Dahmen, M., Lindner, S., Petring, D. 2017. “Perspectives of laser-beam welding of ultra-high steels” pp.1–10.
  • Vahiddastjerdi, H., Rezaeian, A., Toroghinejad, M.R., Dini, G., Ghassemali, E. 2019. “Optimizing pulsed Nd: YAG laser welding of high-Mn TWIP steel using response surface methodology technique” , Optics and Laser Technology, vol.120, pp.105721.
  • Aslanlar, S. 2006. “The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry” , Materials and Design, vol.27, pp.125–131.
  • Lim, Y., Morisada, Y., Liu, H., Fujii, H. 2021. “Ti-6Al-4V/SUS316L dissimilar joints with ultrahigh joint efficiency fabricated by a novel pressure-controlled joule heat forge welding method” , Journal of Materials Processing Technology, vol.298, pp.117283.
  • Ma, L. li, Wei, Y. hui, Hou, L. feng, Yan, B. 2014. “Microstructure and mechanical properties of TWIP steel joints” , Journal of Iron and Steel Research International, vol.21, pp.749–756.
  • Lun, N., Saha, D.C., Macwan, A., Pan, H., Wang, L., Goodwin, F., et al. 2017. “Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel” , Materials and Design, vol.131, pp.450–459.
  • Mujica, L., Weber, S., Pinto, H., Thomy, C., Vollertsen, F. 2010. “Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels” , Materials Science and Engineering A, vol.527, pp.2071–2078.
  • Mújica Roncery, L., Weber, S., Theisen, W. 2012. “Welding of twinning-induced plasticity steels”, Scripta Materialia, vol.66, pp.997–1001.
  • Rajeshkumar, R., Niranjani, V.L., Devakumaran, K., Banerjee, K. 2021. “Structure-property correlation of weld metal zone and interface regions of cold metal transfer welded dissimilar Al-Mg-Mn alloys joint” , Materials Today: Proceedings, vol.46, pp.2498–2509.
  • Ahmed, M.M.Z., Ahmed, E., Hamada, A.S., Khodir, S.A., El-Sayed Seleman, M.M., Wynne, B.P. 2016. “Microstructure and mechanical properties evolution of friction stir spot welded high-Mn twinning-induced plasticity steel” , Materials and Design, vol.91, pp.378–387.
  • Mohamadizadeh, A., Biro, E., Worswick, M., Zhou, N., Malcolm, S., Yau, C., et al. 2019. “Spot weld strength modeling and processing maps for hot-stamping steels” , Welding Journal, vol.98, pp.241S-249S.

Elektrik Direnç Nokta Kaynak Parametrelerinin TWIP/Martenizitik Çeliklerin Kaynağında Porozite Oluşumuna Etkisi

Yıl 2022, , 415 - 428, 09.06.2022
https://doi.org/10.46399/muhendismakina.1022891

Öz

Bu çalışmada, AHSS çelik ailesinden iki önemli çelik olan TWIP ve Martenzitik çeliklerinin birleştirilmesi esnasında oluşan porozite problemi araştırılmıştır. Kaynak akımı ve kaynak süresinin porozite oluşumuna etkisi incelenmiştir. Porozitenin makro ve mikroskopik incelenmesi yapılmış ve porozitenin alan olarak oluşum miktarı kaynak parametreleri açısından incelenerek grafiksel olarak elde edilmiştir. Elde edilen bulgulara göre, kaynak süresi ve kaynak akımı arttıkça porozite miktarı artmıştır. En yüksek porozite miktarı 16.2% olarak 30 periyot kaynak süresi ve 12 kA kaynak akımında gerçekleşmiştir.

Kaynakça

  • Safanama, D.S., Marashi, S.P.H., Pouranvari, M. 2012. “Similar and dissimilar resistance spot welding of martensitic advanced high strength steel and low carbon steel: metallurgical characteristics and failure mode transition” , Science and Technology of Welding & Joining, vol.17, pp.288–294.
  • Cora, Ö.N., Koç, M. 2014. “Promises and Problems of Ultra/Advanced High Strength Steel (U/AHSS) Utilization in Automotive Industry” , 7th Automotive Technologies Congress (OTEKON 2014), pp.1–8.
  • Onar, V., Özen, F., Kekik, M., Aslanlar, Y.S., Özderin, Y., Aslan, H., et al. 2019. “Effect of current and welding time on tensile-peel strength of resistance spot welded TWIP 1000 and martensitic steels” , Indian Journal of Chemical Technology, vol.26,.
  • Macke, A., Schultz, B.F., Rohatgi, P. 2012. “Metal matrix: Composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance” , Advanced Materials and Processes, vol.170, pp.19–23.
  • Şahin, S., Hayat, F., Çölgeçen, O.C. 2021. “The effect of welding current on nugget geometry, microstructure and mechanical properties of TWIP steels in resistance spot welding” , Welding in the World, vol.65, pp.921–935.
  • Baluch, N. 2014. “Advanced High Strength Steel in Auto Industry : an Overview” , Engineering, Technology & Applied Science Research, vol.4, pp.686.
  • Pouranvari, M., Mousavizadeh, S.M. 2013. “Failure mode of M130 Martensitic Resistance Spot Welds” , Materiali in Tehnologije, vol.47, pp.771–776.
  • Venezuela, J., Liu, Q., Zhang, M., Zhou, Q., Atrens, A. 2015. “The influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels studied using the linearly increasing stress test” , Corrosion Science, vol.99, pp.98–117.
  • Cooman, B.C. De, Chin, K., Kim, J. n.d. “High Mn TWIP Steels for Automotive Applications.”
  • Rajinikanth, V., Mukherjee, K., Chowdhury, S.G., Schiebahn, a, Harms, A., Bleck, W., et al. 2013. “Mechanical property and microstructure of resistance spot welded twinning induced plasticity-dual phase steels joint” , Science and Technology of Welding and Joining, vol.18, pp.485–491.
  • Scott, C., Cugy, P. 2009. Vanadium additions in new ultra high strength and ductility steels. in: ArcelorMittal Res. Int. Symp. Automob. Steel”, pp. 211–221.
  • Wang, M.M., Tasan, C.C., Ponge, D., Dippel, A.C., Raabe, D. 2015. “Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance” , Acta Materialia, vol.85, pp.216–228.
  • Özen, F., Aslanlar, S. 2021. “Mechanical and microstructural evaluation of resistance spot welded dissimilar TWIP/martensitic steel joints” , The International Journal of Advanced Manufacturing Technology,.
  • Espinel Hernández, A., Sánchez Roca, A., Carvajal Fals, H., Antonio Ferraresi, V., Oliveira Vilarinho, L. 2016. “Influence of polarity on mechanical properties of dissimilar resistance spot welds of DP 600/AISI 304 steels” , Science and Technology of Welding and Joining, vol.21, pp.607–613.
  • Akkas, N. 2017. “Welding time effect on tensile-shear loading in resistance spot welding of SPA-H weathering steel sheets used in railway vehicles”, Acta Physica Polonica A, vol.131, pp.52–54.
  • Vijayan, V., Murugan, S.P., Ji, C., Son, S.-G., Park, Y.-D. 2021. “Factors affecting shrinkage voids in advanced high strength steel (AHSS) resistance spot welds” , Journal of Mechanical Science and Technology, vol.35, pp.1–6.
  • Vijayan, V., Murugan, S.P., Son, S.G., Park, Y. Do 2019. “Shrinkage Void Formation in Resistance Spot Welds: Its Effect on Advanced High-Strength-Steel Weld Strength and Failure Modes” , Journal of Materials Engineering and Performance, vol.28, pp.7514–7526.
  • Ji, C.W., Jo, I., Lee, H., Choi, I.D., do Kim, Y., Park, Y. Do 2014. “Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels” , Journal of Mechanical Science and Technology, vol.28, pp.4761–4769.
  • Joaquin, A., Elliott, A.N.A., Jiang, C. 2007. “Reducing shrinkage voids in resistance spot welds” , Welding Journal (Miami, Fla), vol.86, pp.24–27.
  • Yang, G., Zhu, F., Dong, S. 2011. “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn” , Journal of Crystal Growth, vol.316, pp.145–148.
  • Chu, J., Bao, Y., Li, X., Wang, M., Gao, F. 2021. “Kinetic study of Mn vacuum evaporation from Mn steel melts” , Separation and Purification Technology, vol.255, pp.117698.
  • Dahmen, M., Lindner, S., Petring, D. 2017. “Perspectives of laser-beam welding of ultra-high steels” pp.1–10.
  • Vahiddastjerdi, H., Rezaeian, A., Toroghinejad, M.R., Dini, G., Ghassemali, E. 2019. “Optimizing pulsed Nd: YAG laser welding of high-Mn TWIP steel using response surface methodology technique” , Optics and Laser Technology, vol.120, pp.105721.
  • Aslanlar, S. 2006. “The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry” , Materials and Design, vol.27, pp.125–131.
  • Lim, Y., Morisada, Y., Liu, H., Fujii, H. 2021. “Ti-6Al-4V/SUS316L dissimilar joints with ultrahigh joint efficiency fabricated by a novel pressure-controlled joule heat forge welding method” , Journal of Materials Processing Technology, vol.298, pp.117283.
  • Ma, L. li, Wei, Y. hui, Hou, L. feng, Yan, B. 2014. “Microstructure and mechanical properties of TWIP steel joints” , Journal of Iron and Steel Research International, vol.21, pp.749–756.
  • Lun, N., Saha, D.C., Macwan, A., Pan, H., Wang, L., Goodwin, F., et al. 2017. “Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel” , Materials and Design, vol.131, pp.450–459.
  • Mujica, L., Weber, S., Pinto, H., Thomy, C., Vollertsen, F. 2010. “Microstructure and mechanical properties of laser-welded joints of TWIP and TRIP steels” , Materials Science and Engineering A, vol.527, pp.2071–2078.
  • Mújica Roncery, L., Weber, S., Theisen, W. 2012. “Welding of twinning-induced plasticity steels”, Scripta Materialia, vol.66, pp.997–1001.
  • Rajeshkumar, R., Niranjani, V.L., Devakumaran, K., Banerjee, K. 2021. “Structure-property correlation of weld metal zone and interface regions of cold metal transfer welded dissimilar Al-Mg-Mn alloys joint” , Materials Today: Proceedings, vol.46, pp.2498–2509.
  • Ahmed, M.M.Z., Ahmed, E., Hamada, A.S., Khodir, S.A., El-Sayed Seleman, M.M., Wynne, B.P. 2016. “Microstructure and mechanical properties evolution of friction stir spot welded high-Mn twinning-induced plasticity steel” , Materials and Design, vol.91, pp.378–387.
  • Mohamadizadeh, A., Biro, E., Worswick, M., Zhou, N., Malcolm, S., Yau, C., et al. 2019. “Spot weld strength modeling and processing maps for hot-stamping steels” , Welding Journal, vol.98, pp.241S-249S.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Fatih Özen 0000-0002-2915-8456

Erdinç İlhan 0000-0002-3873-1680

Salim Aslanlar 0000-0001-6676-110X

Yayımlanma Tarihi 9 Haziran 2022
Gönderilme Tarihi 15 Kasım 2021
Kabul Tarihi 28 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Özen, F., İlhan, E., & Aslanlar, S. (2022). Elektrik Direnç Nokta Kaynak Parametrelerinin TWIP/Martenizitik Çeliklerin Kaynağında Porozite Oluşumuna Etkisi. Mühendis Ve Makina, 63(707), 415-428. https://doi.org/10.46399/muhendismakina.1022891

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520