Araştırma Makalesi
BibTex RIS Kaynak Göster

Carreau Akışkanının Dikey Germe Silindirindeki Akış Karakteristiklerinin Yapay Zeka Yaklaşımıyla Analizi

Yıl 2023, , 91 - 113, 04.04.2023
https://doi.org/10.46399/muhendismakina.1165731

Öz

Bu çalışmada, Carreau akışkan akışının gözenekli bir ortama daldırılmış dikey bir germe silindiri üzerindeki akış karakteristikleri, yapay zeka yaklaşımı ile detaylı olarak analiz edilmiştir. Akış parametreleri olarak lokal yüzey sürtünmesi, lokal Nusselt sayısı ve lokal Sherwood sayısı parametreleri ele alınmıştır. Akış parametrelerini tahmin etmek için çok katmanlı algılayıcı mimarisine sahip üç farklı yapay sinir ağı modeli tasarlanmıştır. Literatürden elde edilmiş nümerik veri seti kullanılarak eğitilmiş olan ağ modellerinde Bayesian Düzenlileştirme eğitim algoritması kullanılmıştır. Farklı performans parametreleri dikkate alınarak optimize edilen yapay sinir ağlarında tahmin performansı en yüksek olan modeller tercih edilmiştir. Elde edilen tahmini değerler, hedef verilerle karşılaştırılmıştır. Ayrıca performans parametreleri de hesaplanmış ve ağ modellerinin performansları kapsamlı bir şekilde analiz edilmiştir. Çalışma bulguları, geliştirilmiş olan yapay sinir ağlarının, doğal taşınımlı Carreau akışına ait parametreleri yüksek doğrulukta tahmin edebildiğini ortaya koymuştur.

Teşekkür

Bu çalışmada kullanılan veri seti, Lim ve diğ. (2022) tarafından yapılmış olan çalışmadan elde edilmiştir. Yazar, katkılarından dolayı Lim ve diğ. (2022)’ne teşekkür eder.

Kaynakça

  • Afzal, S., Siddique, I., Jarad, F., Ali, R., Abdal, S. & Hussain, S. (2021). Significance of double diffusion for unsteady Carreau micropolar nanofluid transportation across an extending sheet with thermo-radiation and uniform heat source, Case Studies in Thermal Engineering, 28, 101397.
  • Ahmadloo, E. & Azizi, S. (2016). Prediction of thermal conductivity of various nanofluids using artificial neural network, International Communications in Heat and Mass Transfer, 74, 69–75.
  • Akbar, N.S. & Nadeem, S. (2014). Carreau fluid model for blood flow through a tapered artery with a stenosis, Eng. Phys. Math., 5, 1307–1316.
  • Akhgar, A., Toghraie, D., Sina, N. & Afrand, M. (2019). Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid, Powder Technology 355, 602–610.
  • Alnaqi, A.A., Alsarraf, J. & Al-Rashed, A.A.A.A. (2021). Effect of off-center finned absorber tube and nanoparticle shape on the performance of two-fluid parabolic solar collector containing nanofluid: An application of artificial neural network, Sustainable Energy Technologies and Assessments, 48, 101668.
  • Asad, F.A., Alam, N., Rashad, A.M. & Sarker, M.A. (2021). Impact of undulation on magneto-free convective heat transport in an enclosure having vertical wavy sides, International Communications in Heat and Mass Transfer, 127, 105579.
  • Asadollahzadeh, M., Hemmati, A., Mostaedi, M.T., Shirvani, M., Ghaemi, A. & Mohsenzadeh, Z.S. (2017). Use of axial dispersion model for determination of Sherwood number and mass transfer coefficients in a perforated rotating disc contactor, Chinese Journal of Chemical Engineering, 25, 53–61.
  • Ayub, S., Zahir, H. & Tanveer, A. (2022). Mixed convection and non-linear thermal radiative analysis for Carreau-Yasuda nanofluid in an endoscope, International Communications in Heat and Mass Transfer, 138, 106371.
  • Behera, B.R., Chandrakar, V. & Senapati, J.R. (2021). Free convection heat transfer from a concave hemispherical surface: A numerical exercise, International Communications in Heat and Mass Transfer, 125, 105324.
  • Bhatti, S., Zahid, M., Ali, R., Sarwar, A. & Wahab, H.A. (2021). Blade coating analysis of a viscoelastic Carreau fluid using Adomian decomposition method, Mathematics and Computers in Simulation, 190, 659–677.
  • Bilal, M., Saeed, A., Gul, T., Rehman, M. & Khan, A. (2021a). Thin-film flow of Carreau fluid over a stretching surface including the couple stress and uniform magnetic field, Partial Differential Equations in Applied Mathematics 4, 100162.
  • Bilal, M., Saeed, A., Selim, M.M., Gul, T., Ali, I. & Kumam, P. (2021b). Comparative numerical analysis of Maxwell’s time-dependent thermo-diffusive flow through a stretching cylinder, Case Studies in Thermal Engineering, 27, 101301.
  • Canakci, A., Ozsahin, S., & Varol, T. (2012). Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks, Powder Technol., 228, 26–35.
  • Carreau, P.J. (1972). Rheological equations from molecular network theories. Trans. Soc. Rheol., 16, 99127.
  • Çolak, A.B. (2021a). Experimental analysis with specific heat of water based zirconium oxide nanofluid on the effect of training algorithm on predictive performance of artificial neural network, Heat Transfer Research, 52(7), 67 – 93.
  • Çolak, A.B. (2021b). An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks, International Journal of Energy Research, 45(1), 478 – 500.
  • Çolak, A.B., Yıldız, O., Bayrak, M. & Tezekici, B.S. (2020). Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation, International Journal of Energy Research, 44(9), 7198-7215. Dahab, S.M.A., Ragab, M., Elhag, A.A. & Khalek, S.A. (2020). Free convection effect on oscillatory flow using artificial neural networks and statistical techniques, Alexandria Engineering Journal, 59, 3599–3608.
  • Gautam, A. & Saini, R.P. (2021). Development of correlations for Nusselt number and friction factor of packed bed solar thermal energy storage system having spheres with pores as packing elements, Journal of Energy Storage, 36, 102362.
  • Güzel, T. & Çolak, A.B. (2022) Investigation of the usability of machine learning algorithms in determining the specific electrical parameters of Schottky diodes, Materials Today Communications, 33, 104175.
  • Haeri, S. & Shrimpton, J.S. (2013). A correlation for the calculation of the local Nusselt number around circular cylinders in the range 10≤Re≤250 and 0.1≤Pr≤40, International Journal of Heat and Mass Transfer, 59, 219–229.
  • Jayawickrama, T.R., Haugen, N.E.L., Babler, M.U., Chishty, M.A. & Umeki, K. (2021). The effect of Stefan flow on Nusselt number and drag coeffcient of spherical particles in non-isothermal gas flow, International Journal of Multiphase Flow, 140, 103650.
  • Li, Y.X., Waqas, H., Khaled, K.A., Khan, S.A., Khan, M.I., Khan, S.U., Naseem, R. & Chu, Y.M. (2021). Simultaneous features of Wu’s slip, nonlinear thermal radiation and activation energy in unsteady bio-convective flow of Maxwell nanofluid configured by a stretching cylinder, Chinese Journal of Physics, 73, 462–478.
  • Lim, Y.J., Shafie, S., Isa, S.M., Rawi, N.A. & Mohamad, A.Q. (2022). Impact of chemical reaction, thermal radiation and porosity on free convection Carreau fluid flow towards a stretching cylinder, Alexandria Engineering Journal, 61, 4701-4717.
  • Nadeem, S., Riaz, A., Akbar, N.S. & Ellahi, R. (2013). Series solution of unsteady peristaltic flow of a Carreau fluid in eccentric cylinders, Ain Shams Eng. J., 5, 293-304.
  • Neumann, H., Gamisch, S. & Gschwander, S. (2021). Comparison of RC-model and FEM-model for a PCM-plate storage including free convection, Applied Thermal Engineering, 196, 117232.
  • Nisar, K.S., Mohapatra, R., Mishra, S.R. & Reddy, M.G. (2021). Semi-analytical solution of MHD free convective Jeffrey fluid flow in the presence of heat source and chemical reaction, Ain Shams Engineering Journal, 12, 837–845.
  • Öcal, S., Gökçek, M., Çolak, A.B. & Korkanç, M. (2021). A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: Proposing new correlation and artificial neural network optimization, Heat Transfer Research, 52(17), 55–79.
  • Pigeonneau, F., Pereira, L. & Laplace, A. (2021). Mass transfer around a rising bubble in a glass-forming liquid involving oxidation-reduction reaction: Numerical computation of the Sherwood number, Chemical Engineering Science, 232, 116382.
  • Rao, S.R., Vidyasagar, G. & Deekshitulu, G.V.S.R. (2021). Unsteady MHD free convection Casson fluid flow past an exponentially accelerated infinite vertical porous plate through porous medium in the presence of radiation absorption with heat generation/absorption, Materials Today: Proceedings, 42, 1608–1616.
  • Salahuddin, T., Awais, M. & Xia, W.F. (2021a). Variable thermo-physical characteristics of Carreau fluid flow by means of stretchable paraboloid surface with activation energy and heat generation, Case Studies in Thermal Engineering, 25, 100971.
  • Salahuddin, T., Awais, M. & Salleh, Z. (2021b). A flow study of Carreau fluid near the boundary layer region of paraboloid surface with viscous dissipation and variable fluid properties, Journal of Materials Research and Technology, 14, 901-909.
  • Shafey, A.M.E., Alharbi, F.M., Javed, A., Abbas, N., ALrafai, H.A., Nadeem, S. & Issakhov, A. (2021). Theoretical analysis of Brownian and thermophoresis motion effects for Newtonian fluid flow over nonlinear stretching cylinder, Case Studies in Thermal Engineering, 28, 101369.
  • Shah, N.A., Wakif, A., Shah, R., Yook, S., Salah, B., Mahsud, Y. & Hussain, K. (2021). Effects of fractional derivative and heat source/sink on MHD free convection flow of nanofluids in a vertical cylinder: A generalized Fourier’s law model, Case Studies in Thermal Engineering, 28, 101518.
  • Shahid, A., Bhatti, M.M., Ellahi, R. & Mekheimer, Kh.S. (2022). Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: Application in solar energy, Sustainable Energy Technologies and Assessments, 52, 102029.
  • Siddiqui, B.K., Batool, S., Hassan, Q.M. & Malik, M.Y. (2022). Repercussions of homogeneous and heterogeneous reactions of 3D flow of Cu-water and AL2O3-water nanofluid and entropy generation estimation along stretching cylinder, Ain Shams Engineering Journal, 13, 101493.
  • Song, Y.Q., Hamid, A., Sun, T.C., Khan, M.I. & Chinram, R. (2022). Unsteady mixed convection flow of magnetoWilliamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features, Alexandria Engineering Journal, 61, 195–206.
  • Sulaiman, M., Hammouti, A., Climent, E. & Wachs, A. (2019). Coupling the fictitious domain and sharp interface methods for the simulation of convective mass transfer around reactive particles: Towards a reactive Sherwood number correlation for dilute systems, Chemical Engineering Science, 198, 334–351.
  • Sun, J., Guo, L., Jing, J., Tang, C., Lu, Y., Fu, J., Ullmann, A. & Brauner, N. (2021). Investigation on laminar pipe flow of a non-Newtonian Carreau-Extended fluid, Journal of Petroleum Science and Engineering, 205, 108915.
  • Vafaei, M., Afrand, M., Sina, N., Kalbasi, R., Sourani, F. & Teimouri, H. (2017). Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks, Physica E, 85, 90–96.
  • Vaferi, B., Eslamloueyan, R. & Ayatollahi, S. (2011). Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks, J. Petrol. Sci. Eng., 77, 254–262.
  • Vaferi, B., Samimi, F., Pakgohar, E. & Mowla, D. (2014). Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes, Powder Technol., 267, 1–10.

Analysis of Flow Characteristics of Carreau Fluid in a Vertical Stretching Cylinder with Artificial Intelligence Approach

Yıl 2023, , 91 - 113, 04.04.2023
https://doi.org/10.46399/muhendismakina.1165731

Öz

In this study, the flow characteristics of Carreau fluid flow on a vertical stretching cylinder immersed in a porous medium were analyzed in detail with an artificial intelligence approach. Local skin friction, local Nusselt number and local Sherwood number parameters are considered as flow parameters. Three different neural network models with multilayer perceptron architecture are designed to estimate the flow parameters. Bayesian Regularization training algorithm was used in artificial neural networks trained using a numerically calculated data set obtained from the literature. The models with the highest prediction performance were preferred in the artificial neural networks optimized by considering different performance parameters. The estimated values obtained were compared with the target data. In addition, the performance parameters were calculated and the performances of the network models were analyzed comprehensively. The study findings showed that neural networks are an ideal artificial intelligence tool that can be used to predict the flow properties of natural convection Carreau fluid flow towards the stretching cylinder.

Kaynakça

  • Afzal, S., Siddique, I., Jarad, F., Ali, R., Abdal, S. & Hussain, S. (2021). Significance of double diffusion for unsteady Carreau micropolar nanofluid transportation across an extending sheet with thermo-radiation and uniform heat source, Case Studies in Thermal Engineering, 28, 101397.
  • Ahmadloo, E. & Azizi, S. (2016). Prediction of thermal conductivity of various nanofluids using artificial neural network, International Communications in Heat and Mass Transfer, 74, 69–75.
  • Akbar, N.S. & Nadeem, S. (2014). Carreau fluid model for blood flow through a tapered artery with a stenosis, Eng. Phys. Math., 5, 1307–1316.
  • Akhgar, A., Toghraie, D., Sina, N. & Afrand, M. (2019). Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid, Powder Technology 355, 602–610.
  • Alnaqi, A.A., Alsarraf, J. & Al-Rashed, A.A.A.A. (2021). Effect of off-center finned absorber tube and nanoparticle shape on the performance of two-fluid parabolic solar collector containing nanofluid: An application of artificial neural network, Sustainable Energy Technologies and Assessments, 48, 101668.
  • Asad, F.A., Alam, N., Rashad, A.M. & Sarker, M.A. (2021). Impact of undulation on magneto-free convective heat transport in an enclosure having vertical wavy sides, International Communications in Heat and Mass Transfer, 127, 105579.
  • Asadollahzadeh, M., Hemmati, A., Mostaedi, M.T., Shirvani, M., Ghaemi, A. & Mohsenzadeh, Z.S. (2017). Use of axial dispersion model for determination of Sherwood number and mass transfer coefficients in a perforated rotating disc contactor, Chinese Journal of Chemical Engineering, 25, 53–61.
  • Ayub, S., Zahir, H. & Tanveer, A. (2022). Mixed convection and non-linear thermal radiative analysis for Carreau-Yasuda nanofluid in an endoscope, International Communications in Heat and Mass Transfer, 138, 106371.
  • Behera, B.R., Chandrakar, V. & Senapati, J.R. (2021). Free convection heat transfer from a concave hemispherical surface: A numerical exercise, International Communications in Heat and Mass Transfer, 125, 105324.
  • Bhatti, S., Zahid, M., Ali, R., Sarwar, A. & Wahab, H.A. (2021). Blade coating analysis of a viscoelastic Carreau fluid using Adomian decomposition method, Mathematics and Computers in Simulation, 190, 659–677.
  • Bilal, M., Saeed, A., Gul, T., Rehman, M. & Khan, A. (2021a). Thin-film flow of Carreau fluid over a stretching surface including the couple stress and uniform magnetic field, Partial Differential Equations in Applied Mathematics 4, 100162.
  • Bilal, M., Saeed, A., Selim, M.M., Gul, T., Ali, I. & Kumam, P. (2021b). Comparative numerical analysis of Maxwell’s time-dependent thermo-diffusive flow through a stretching cylinder, Case Studies in Thermal Engineering, 27, 101301.
  • Canakci, A., Ozsahin, S., & Varol, T. (2012). Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks, Powder Technol., 228, 26–35.
  • Carreau, P.J. (1972). Rheological equations from molecular network theories. Trans. Soc. Rheol., 16, 99127.
  • Çolak, A.B. (2021a). Experimental analysis with specific heat of water based zirconium oxide nanofluid on the effect of training algorithm on predictive performance of artificial neural network, Heat Transfer Research, 52(7), 67 – 93.
  • Çolak, A.B. (2021b). An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks, International Journal of Energy Research, 45(1), 478 – 500.
  • Çolak, A.B., Yıldız, O., Bayrak, M. & Tezekici, B.S. (2020). Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation, International Journal of Energy Research, 44(9), 7198-7215. Dahab, S.M.A., Ragab, M., Elhag, A.A. & Khalek, S.A. (2020). Free convection effect on oscillatory flow using artificial neural networks and statistical techniques, Alexandria Engineering Journal, 59, 3599–3608.
  • Gautam, A. & Saini, R.P. (2021). Development of correlations for Nusselt number and friction factor of packed bed solar thermal energy storage system having spheres with pores as packing elements, Journal of Energy Storage, 36, 102362.
  • Güzel, T. & Çolak, A.B. (2022) Investigation of the usability of machine learning algorithms in determining the specific electrical parameters of Schottky diodes, Materials Today Communications, 33, 104175.
  • Haeri, S. & Shrimpton, J.S. (2013). A correlation for the calculation of the local Nusselt number around circular cylinders in the range 10≤Re≤250 and 0.1≤Pr≤40, International Journal of Heat and Mass Transfer, 59, 219–229.
  • Jayawickrama, T.R., Haugen, N.E.L., Babler, M.U., Chishty, M.A. & Umeki, K. (2021). The effect of Stefan flow on Nusselt number and drag coeffcient of spherical particles in non-isothermal gas flow, International Journal of Multiphase Flow, 140, 103650.
  • Li, Y.X., Waqas, H., Khaled, K.A., Khan, S.A., Khan, M.I., Khan, S.U., Naseem, R. & Chu, Y.M. (2021). Simultaneous features of Wu’s slip, nonlinear thermal radiation and activation energy in unsteady bio-convective flow of Maxwell nanofluid configured by a stretching cylinder, Chinese Journal of Physics, 73, 462–478.
  • Lim, Y.J., Shafie, S., Isa, S.M., Rawi, N.A. & Mohamad, A.Q. (2022). Impact of chemical reaction, thermal radiation and porosity on free convection Carreau fluid flow towards a stretching cylinder, Alexandria Engineering Journal, 61, 4701-4717.
  • Nadeem, S., Riaz, A., Akbar, N.S. & Ellahi, R. (2013). Series solution of unsteady peristaltic flow of a Carreau fluid in eccentric cylinders, Ain Shams Eng. J., 5, 293-304.
  • Neumann, H., Gamisch, S. & Gschwander, S. (2021). Comparison of RC-model and FEM-model for a PCM-plate storage including free convection, Applied Thermal Engineering, 196, 117232.
  • Nisar, K.S., Mohapatra, R., Mishra, S.R. & Reddy, M.G. (2021). Semi-analytical solution of MHD free convective Jeffrey fluid flow in the presence of heat source and chemical reaction, Ain Shams Engineering Journal, 12, 837–845.
  • Öcal, S., Gökçek, M., Çolak, A.B. & Korkanç, M. (2021). A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: Proposing new correlation and artificial neural network optimization, Heat Transfer Research, 52(17), 55–79.
  • Pigeonneau, F., Pereira, L. & Laplace, A. (2021). Mass transfer around a rising bubble in a glass-forming liquid involving oxidation-reduction reaction: Numerical computation of the Sherwood number, Chemical Engineering Science, 232, 116382.
  • Rao, S.R., Vidyasagar, G. & Deekshitulu, G.V.S.R. (2021). Unsteady MHD free convection Casson fluid flow past an exponentially accelerated infinite vertical porous plate through porous medium in the presence of radiation absorption with heat generation/absorption, Materials Today: Proceedings, 42, 1608–1616.
  • Salahuddin, T., Awais, M. & Xia, W.F. (2021a). Variable thermo-physical characteristics of Carreau fluid flow by means of stretchable paraboloid surface with activation energy and heat generation, Case Studies in Thermal Engineering, 25, 100971.
  • Salahuddin, T., Awais, M. & Salleh, Z. (2021b). A flow study of Carreau fluid near the boundary layer region of paraboloid surface with viscous dissipation and variable fluid properties, Journal of Materials Research and Technology, 14, 901-909.
  • Shafey, A.M.E., Alharbi, F.M., Javed, A., Abbas, N., ALrafai, H.A., Nadeem, S. & Issakhov, A. (2021). Theoretical analysis of Brownian and thermophoresis motion effects for Newtonian fluid flow over nonlinear stretching cylinder, Case Studies in Thermal Engineering, 28, 101369.
  • Shah, N.A., Wakif, A., Shah, R., Yook, S., Salah, B., Mahsud, Y. & Hussain, K. (2021). Effects of fractional derivative and heat source/sink on MHD free convection flow of nanofluids in a vertical cylinder: A generalized Fourier’s law model, Case Studies in Thermal Engineering, 28, 101518.
  • Shahid, A., Bhatti, M.M., Ellahi, R. & Mekheimer, Kh.S. (2022). Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: Application in solar energy, Sustainable Energy Technologies and Assessments, 52, 102029.
  • Siddiqui, B.K., Batool, S., Hassan, Q.M. & Malik, M.Y. (2022). Repercussions of homogeneous and heterogeneous reactions of 3D flow of Cu-water and AL2O3-water nanofluid and entropy generation estimation along stretching cylinder, Ain Shams Engineering Journal, 13, 101493.
  • Song, Y.Q., Hamid, A., Sun, T.C., Khan, M.I. & Chinram, R. (2022). Unsteady mixed convection flow of magnetoWilliamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features, Alexandria Engineering Journal, 61, 195–206.
  • Sulaiman, M., Hammouti, A., Climent, E. & Wachs, A. (2019). Coupling the fictitious domain and sharp interface methods for the simulation of convective mass transfer around reactive particles: Towards a reactive Sherwood number correlation for dilute systems, Chemical Engineering Science, 198, 334–351.
  • Sun, J., Guo, L., Jing, J., Tang, C., Lu, Y., Fu, J., Ullmann, A. & Brauner, N. (2021). Investigation on laminar pipe flow of a non-Newtonian Carreau-Extended fluid, Journal of Petroleum Science and Engineering, 205, 108915.
  • Vafaei, M., Afrand, M., Sina, N., Kalbasi, R., Sourani, F. & Teimouri, H. (2017). Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks, Physica E, 85, 90–96.
  • Vaferi, B., Eslamloueyan, R. & Ayatollahi, S. (2011). Automatic recognition of oil reservoir models from well testing data by using multi-layer perceptron networks, J. Petrol. Sci. Eng., 77, 254–262.
  • Vaferi, B., Samimi, F., Pakgohar, E. & Mowla, D. (2014). Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes, Powder Technol., 267, 1–10.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Andaç Batur Çolak 0000-0001-9297-8134

Yayımlanma Tarihi 4 Nisan 2023
Gönderilme Tarihi 23 Ağustos 2022
Kabul Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çolak, A. B. (2023). Carreau Akışkanının Dikey Germe Silindirindeki Akış Karakteristiklerinin Yapay Zeka Yaklaşımıyla Analizi. Mühendis Ve Makina, 64(710), 91-113. https://doi.org/10.46399/muhendismakina.1165731

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520